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Within the context of the de.NBI partner project “Structured Analysis and Integration of RNA-Seq

experiments (de.STAIR)” we focus on the systemic relevance of regulatory RNAs. One class of

regulatory RNAs are the trans-acting small RNAs (sRNAs), post-transcriptional regulators of gene

expression. The numbers and types of known sRNAs have rapidly been increasing during recent

years due to the extensive application of transcriptomics analyses, also in non-model organisms.

The functional and evolutionary characterization of sRNAs requires the identification of homologs.

However, finding homologs is frequently challenging due to their heterogeneity, shortness, and

partly little sequence conservation. We have established GLASSgo as a standard tool for finding

sRNA homologs from a single sequence. Although sequences predicted by GLASSgo are highly

reliable, homologs with very low sequence conservation might be missed if the default settings of

the workflow are used. To overcome this limitation, we take advantage of analyzing meta-data

(synteny) for re-evaluating rejected GLASSgo hits.

Here we present a synteny network build from trustable GLASSgo hits to test sequences below the

adjusted threshold of a minimum pairwise similarity of 52%. Therefore, we made use of Google‘s

PageRank algorithm to rate the importance of individual homologs/nodes in the network and to

assess significance criteria to score the candidate sRNA homologs based on their synteny.

We developed a novel method to analyze meta-data to compute a similarity score called PRS

(PageRank based Score). Therefore we utilize all reported GLASSgo hits to build a directed network

and rank the nodes with Google's PageRank. Further, we established methods to consider

insertions, deletions, and inversions, to calculate a similarity score for all questionable sequences

and their synteny.

For evaluating the performance of the newly developed algorithm, we selected 40 sRNA-related

RFAM families and constructed for each family a directed network. Afterwards, a single sequence

per family was selected and used as input for the GLASSgo algorithm. The unfiltered GLASSgo

results were used for extracting the associated synteny and calculating the PRS based on the

corresponding pre-computed network.

Additionally, we worked on several improvements regarding GLASSgo, such as the easily accessible

web-server, docker integration as well as on the full GALAXY support.

github.com/destairdenbi

10.3389/fgene.2018.00124

rna.informatik.uni-freiburg.de/GLASSgo/

hub.docker.com/r/lotts/glassgo_acc_version

https://toolshed.g2.bx.psu.edu

For demonstrating the power of the

newly developed PageRank based score,

we analyzed unfiltered GLASSgo results

coming from 40 different sRNA families.

INFERNAL was used to evaluate the

unfiltered GLASSgo results, and the

color indicates green=True Positives,

red=False Positives, as well as

blue=Network. The network was built

using the corresponding RFAM-families.

The PageRank based Score (PRS) takes only a predefined number of genes into account (dashed

line) and can handle deletions, insertions as well as inversions.
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Project	– Evaluation:	PRS	(PageRank based Score)	calculation

Project	– Results evalutated with InfernalResults - Evaluated by Infernal
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Project	– Algorithm description

The algorithm takes trustable homologs in multi-FASTA-format as input and extracts for each

entry (e.g., sRNA) the surrounding gene neighborhood. Given the obtained synteny, a directed

network is built with the sRNA as the center. Phylogenetic tree normalization decreases

database biases, such as organism overrepresentation. Finally, PageRank takes the

normalized network as input and assigns a value of significance to each node.
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