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FOREWORD

Breakthroughs in deep learning led to a great comeback of the 

topic artificial intelligence (AI) and raises hopes for great inno-

vations. This spectacular progress in the field of AI is only made 

possible by large amounts of available data for learning. AI can 

perform complex tasks while simulating human-like levels of in-

telligence and has stepped in to navigate the scientific commu-

nity through the enormous ocean of data produced all over the 

world. And thus, AI will transform research in the life sciences.

The German Network for Bioinformatics Infrastructure (de.NBI) 

and the German Node of the European ELIXIR network are aware 

of the potential of AI and the richness of data and therefore bun-

dle all forces and bioinformatics experts to meet this challenge. 

To handle, analyze and store Big Data, de.NBI provides bioinfor-

matic tools and infrastructure like the de.NBI cloud, to apply AI 

to answer biological questions and improve AI algorithms. More-

over, de.NBI makes data available in a transparent, democrati-

cally controlled, and directly usable form (FAIR principles). 

This brochure gives an overview about de.NBI and ELIXIR Ger-

many activities in the field of AI, which are carried out by de.NBI 

members and/or with de.NBI resources. In total, we highlight 16 

projects showing various aspects of integration and usage of 

de.NBI resources in AI projects, starting from prediction and 

modelling with the support of AI, improvement for research ser-

vices and the acceleration of science through the application of 

AI. This booklet demonstrates that the existing diverse bioinfor-

matics infrastructure of the de.NBI network and ELIXIR Germany 

is aware of the AI potential for the life sciences community.

The editorial team and the authors of this brochure, hope that 

we can provide all interested readers with exciting insights into 

current research approaches in the field of AI. We wish you enjoy 

reading these articles.

Dear Reader,FOREWORD

Andreas Tauch    Alfred Pühler
Head of Node of ELIXIR Germany de.NBI Coordinator  

 

Prof. Dr. Andreas Tauch Prof. Dr. Alfred Pühler
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de.NBI is a distributed bioinformatics infrastructure which started in March 2015 as an 

academic and non-profit initiative of the German Ministry of Research and Education 

(BMBF). The de.NBI network is aimed to deliver high standards of bioinformatics ser-

vices, comprehensive training, powerful computing capacities (de.NBI Cloud) as well as 

connections to industrial companies that assist researchers to more effectively exploit 

their own data and contribute to the advancement of Life Science research in Germany 

and Europe.

THE GERMAN NETWORK  FOR BIOINFORMATICS INFRASTRUCTURE – de.NBI
THEMATIC FOCUSES & 
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ELIXIR, the European Life Science Infrastructure for Biological 

Information, was founded in 2014 as an intergovernmental orga-

nization and brings together life science resources from across 

Europe. The consortium currently consists of 22 member states 

plus EMBL, and Cyprus which is an observer country and ELIXIR 

Germany being the German Node of ELIXIR since 2016. The node 

is run by members of the German Network for Bioinformatics 

Infrastructure (de.NBI). The infrastructure of ELIXIR Germany is  

represented by eight service units distributed across Germany 

and the associated EMBL Heidelberg. ELIXIR Germany is co-

ordinated from Bielefeld University and funded by the German 

government. The National Node is led by the Head of Node  

Prof. Dr. Andreas Tauch.

The organization of ELIXIR activities is structured around Plat-

forms, Communities and different Focus Groups. Various Focus 

Groups are currently under consideration to become a mature 

community – one of which is Machine learning (ML). This Group 

was initiated in October 2019 to capture the emerging need in 

Machine learning expertise across the network.

ELIXIR Germany is represented in almost all platforms and  

communities and actively participates in numerous studies  

to further develop them in a future-oriented manner.

THE GERMAN NODE WITHIN ELIXIR EUROPE

Andreas Tauch

Head of Node

tauch@cebitec.uni-bielefeld.de

www.denbi.de/elixir-de
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de.NBI CLOUDCloud Computing for Life Sciences

Alexander Sczyrba

de.NBI Cloud Coordinator

asczyrba@cebitec.uni-bielefeld.de

https://cloud.denbi.de/get-started/

Peter Belmann
de.NBI Cloud Governance

cloud@denbi.de

https://cloud.denbi.de/get-started/

CONTACT

In today ́s life sciences the handling, analysis and storage of 
enormous amounts of data is a challenging issue. An appropriate 

IT infrastructure is crucial to perform analyses with such large 

datasets and to ensure secure data access and storage. The de.NBI 

Cloud is an excellent solution to enable integrative analyses and 

the efficient use of data in research and application. Researchers 

from the life sciences in Germany can use the de.NBI Cloud free 

of charge. User meetings are regularly organized to ensure that 

the requirements of the community are taken into account for 

the future development of the de.NBI Cloud.

• Full OpenStack Environment per Project
• For fully customizable provisioning and  
 development of VMs and Services/Clusters

• Custom project-type based an OpenStack
• For simple development of VMs and Services/
 Clusters and integration of e.g. Bioconda

Largest scientific 
cloud in Germany and 

one of the leading 
European academic 

clouds in life  
sciences.

Cloud Access
• principal investigator of German university  

or research institution applies for cloud  

resources by proposing a 

project and describing required resources 

through the de.NBI Portal

• the project is reviewd by a scientific commitee

• after appoval of the application, the project is 

created in the de.NBI Cloud Portal

• project resources are allocated at one of the 

cloud sites
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de.NBI virtual organisation.

Log in at the de.NBI Cloud portal 
using your existing ELIXIR ac-

count.

Select a project type 
in ‘New Application’. 

Fill in the application form for the 
selected project type and submit. 

Now the application will be re-

viewed by the Cloud committee.

You will be notified as soon as your 
application is approved.

The requested resources are now 

allocated in the  de.NBI Cloud and 
managed  within our portal.

Add members to your project.

LOGIN
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SUBMIT

REVIEW
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de .NBI CLOUD – CLOUD COMPUTING FOR LIFE SCIENCES
de.NBI

https://cloud.denbi.de/get-started/
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Johanna Nelkner

de.NBI Service Coordinator

contact@denbi.de

https://www.denbi.de/services

CONTACT CONTACT

Daniel Wibberg

de.NBI Training Coordinator

contact@denbi.de

www.denbi.de/training

Status: September 2021

de .NBI SERVICES: TOOLS, WORKFLOWS, DATABASES, CONSULTING
de.NBI

One of the main tasks of the de.NBI network is the service 

area. de.NBI offers a diverse portfolio for the analysis of 

large amounts of data. Services are aimed at application 

users in life sciences as well as bioinformaticians and de-

velopers. The de.NBI services will be unified with regard to 

standards,interoperability and reproducibility.

de.NBI SERVICESTools, Workflows, Databases, Consulting
CONSULTINGS

SOFTWARE  
LIBRARIES

TOOLS

DATA  
BASES

WEB  
SERVICES

WORK- 
FLOWS 

The de.NBI network organizes high-quality, coherent, timely, and 

impactful training events and provides online training materials on a 

broad range of topics in bioinformatics. Current developments in the 

field of bioinformatics are also addressed in de.NBI symposia, special 

workshops and annual summer schools. Life scientists learn how to 

handle and analyze biological big data more effectively by applying 

tools, standards and compute services provided by de.NBI. 

de.NBI TRAINING  for Life Scientists

TRAINING MINUTES 
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TRAINING 
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361

PARTICIPANTS  

 
 
7321

TRAINERS 
 
 

89
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ARE FEMALE

 
 

49 % OF OUR 

PARTICIPANTS 

ARE MALE

 
 

NUMBER OF TRAINING COURSES 

dede.NBI.NBI
TRAININGTRAINING

PARTICIPANTS  

FROM ABROAD
 
 
35%

de .NBI-TR AINING FOR LIFE SCIENTISTS
de.NBI
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de.NBI INDUSTRIAL FORUM Industry services,  Consulting, Networking

de .NBI USER MEETINGS 
de.NBI

The de.NBI Industrial Forum offers a 

networking platform for industrial com-

panies that deal with huge amounts 

of data in the life sciences. Members 

of the de.NBI Industrial Forum receive 

access to de.NBI services and training, 

and are informed about developments 

in the network.

de.NBI USER MEETINGS
The user meetings within the de.NBI 

network are targeted towards a net-

work-wide framework for user-cen-

tered activities. The main aim of 

those activities is to exchange expe-

riences, opinions and expectations 

of de.NBI users. The gathered users’ 

feedback should be implemented in 

the offered services, training, and 

compute resources of the de.NBI 

network. 

With this, the user meeting efforts 

support the improvement of the 

offered bioinformatics service and 

foster the sustainable development 

of the bioinformatics infrastructure 

within the de.NBI network.

Manuel Wittchen

de.NBI Industrial Forum Manager

contact@denbi.de

https://www.denbi.de/industrial-forum

CONTACT CONTACT

Nils-Christian Lübke

de.NBI Community Coordinator

contact@denbi.de

www.denbi.de
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de.NBI
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PREDICTION REQUIRED – PHENOTYPING AND  MODELLING OF CELLULAR  PROCESSES USING AI
Artificial Intelligence (AI) is emerging as one of the 

key disruptive technologies in Life Sciences. The 

strong suit of AI is the prediction by learning to 

process rules from examples rather than relying on 

manual adjustments of parameters or predefined 

processing steps. From modeling biological 

processes from the cellular to the organisms’ 

level, identifying drug targets, detecting 

hidden phenotypes or making healthcare more 

personalized, the applications of AI are endless.
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Antibiotic-resistant bacteria are increasingly common in hospi-

tals, farm animals, food and the environment. The continued rise 

in resistance even against last-resort antibiotics and the lack of 

new compounds make treatments challenging and inevitably lead 

to a return to the pre-antibiotic era. The recent increase in bac-

terial genomic data provides a promising source to explore ap-

proaches that tackle this problem and address so far unexplained 

antibiotic resistance. The BMBF funded project Deep-iAMR aims 

at developing automatic scalable bioinformatics workflows. New 

deep learning approaches are applied to predict antimicrobial re-

sistance rapidly and reliably and to uncover hitherto hidden path-

ways and novel targets for the development of new antibiotics.

ANTIBIOTIC RESISTANT BACTERIA –  

A GLOBAL THREAT FOR PUBLIC 

HEALTH WORLDWIDE

Antibiotic resistance is one of the big-

gest threats to global health, food secu-

rity and development today. Antimicrobial 

resistance (AMR) threatens the effective 

prevention and treatment of a constantly 

increasing range of infections caused by 

bacteria, parasites and fungi. The pres-

ence of clinically relevant AMR has signifi-

cantly increased worldwide resulting in 

expensive and difficult-to-treat infections 

in humans. While some new antibiotics 

are in development, none of them are ex-

pected to be effective against highly an-

tibiotic-resistant bacteria. For example, 

resistance in Escherichia coli to one of the 

most common drugs used to treat urinary 

tract infections (fluoroquinolone antibi-

otics) is very widespread. This treatment 

is already ineffective in more than half of 

the patients in many countries. The ad-

vent of affordable and high throughput 

genome sequencing technologies has 

opened new avenues to address the prob-

lem of AMR. With the resulting availability 

of large-scale genome data sets, compar-

ative and genome-wide studies have re-

vealed associations with known and novel 

genetic AMR determinants (genes or sin-

gle nucleotide variations (SNVs)). Current 

AMR predictions are generally based on 

the detection of the presence or absence 

of previously recognized genetic deter-

minants. Regardless, this ‘presence-ab-

sence’ approach does not adequately ac-

count for the plethora of AMR phenotypes 

that bacteria exhibit. Notably, the extent 

and the varying degree of resistance, 

which is commonly indicated by the min-

imum inhibitory concentration, could not 

be elucidated. The AMR profile is a cumu-

lative result of contributions from more 

than one genetic determinant, in which 

each genetic determinant imparts a dif-

ferent weightage [1-3]. A strategy that 

considers genes or SNVs irrespective 

of previous knowledge individually or in 

combination with varying weightage of 

each genetic determinant is required to 

predict the qualitative and quantitative 

profile of AMR. This is a computationally 

time-consuming and expensive strategy 

that takes into account a large number of 

parameters (genetic differences between 

bacterial strains) and is essentially much 

larger than the total number of samples. 

For the bacterium E. coli, in silico detec-

tion of single antibiotic resistance and its 

level of resistance could result from one 

or more or combinations of any of five 

million bases of the genome. In summa-

ry, analyzing and interpreting such a large 

scale of information has been a limiting 

factor. With advances in scalable, feder-

ated and nearby (’cloud‘) infrastructures, 

effective machine learning approaches 

and more complex analyses can now be 

used to accommodate the huge increases 

in data.

DEEP-iAMRIdentification of new  antimi crobial resistance  targets by high-through-  put deep learning
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In the joint Deep-iAMR project, we apply 

deep learning approaches for modelling 

AMR that satisfy the demand for combin-

ing a large number of parameters. These 

models will enable rapid and accurate 

diagnostics, enhance surveillance and 

allow an exploration of the role of genetic 

bacterial determinants in treatment fail-

ures beyond the classical well-studied re-

sistance genes. The high dimensionality 

of the data required for genotype-pheno-

type predictions tends to hinder general-

izations and challenges the scalability of 

most learning algorithms. Therefore, this 

project aims at combining various omics 

data sets together with clinical and phe-

notypic information available for a large 

well-characterized set of multi-drug re-

sistant E. coli isolates. As illustrated in 

Figure 1, this data will be used to train 

deep neural networks (DNNs). Clinical 

samples for this project are collected at 

the Institute of Medical Microbiology at 

the Justus Liebig University (JLU) hos-

pital Giessen headed by Prof. Dr. Trinad 

Chakraborty. By this means, a contempo-

rary set of multi-drug resistant bacterial 

pathogens are collected, sequenced and 

a phenotypic AMR profile is determined. 

During this project, this set of input data 

will be extended by higher-level informa-

tion from detailed feature annotations 

that will be generated by automated bio-

informatics analysis pipelines provided 

by Prof. Dr. Alexander Goesmann and his 

team from the Systems Biology group 

at JLU Giessen. Ultimately, it is our goal 

to use the DNNs developed by Prof. Dr. 

Dominik Heider and his group from the 

Department of Mathematics and Comput-

er Science at the University of Marburg 

for sophisticated prediction and classifi-

cation of AMR mechanisms and patterns 

in newly sequenced genomes. In addition, 

we will extract relevant elements from 

the DNNs and validate whether they indi-

cate potentially new targets for AMR. 

ARTIFICIAL INTELLIGENCE FOR 

DRUG RESISTANCE PREDICTION

Artificial intelligence (AI), and particu-

larly deep learning (DL), is well-suited for 

the development of predictive models 

in many different areas, especially for 

image data, e.g., magnetic resonance 

imaging or computer-assisted tomog-

raphy scans for medical diagnostics. In 

the current project, we focus on genom-

ic data, either from microbial communi-

ties or single bacterial genomes, which 

is typically not provided as image data. 

Different approaches exist to incorporate 

and encode genomic data into images 

for further analyses. One very promising 

approach is the Chaos Game Representa-

tion (CGR). CGR can be used to visualize 

sequential data as a fractal. As DNA mol-

ecules can be represented as sequences 

of characters (namely A, C, G and T), DNA 

can also be encoded using CGR leading 

to a fractal of squares (Figure 2). It has 

already been demonstrated that models 

based on CGR-encoded data are highly 

accurate and very fast [4,5], too, for in-

stance in enabling phylogenetic analyses 

of bacterial genomes.

In our project, we will encode the bacteri-

al genomic data with CGR and use the re-

sulting fractals as input for Convolutional 

Neural Networks (CNNs). CNNs are a class 

of deep neural networks, namely regular-

ized versions of multilayer perceptrons. A 

CNN typically uses a tensor as input and 

consists of convolutional layers, which 

learn filters and thus features of the data 

as well as pooling layers, which perform 

a non-linear down-sampling of the input 

space, e.g., by using the max function 

(Figure 3).

We will analyze different network topolo-

gies, i.e. different numbers of layers, dif-

ferent numbers of neurons per layer, etc. 

to find the best working model for the 

prediction of AMR. Moreover, we will be 

able to identify novel resistance mech-

anisms by differential CGRs and gain 

insights into the underlying biology of 

mutations in multi-resistant pathogens, 

which will lead to better treatment of the 

patients. 
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FIGURE 1: The flow of data within 

the Deep-iAMR project. The project 

aims to combine various omics data 

sets with clinical and phenotypic 

information for a large well-charac-

terized set of multi-drug resistant 

E.coli isolates. This data is then used 

to train deep neural networks. Final-

ly, our software will be deployed via 

user-friendly containerization tech-

niques and scalable cloud solutions.

FIGURE 2: Chaos Game Representa-

tion for DNA. A) Sub-quadrants of the 

CGR. B) Way walked to draw points. C) 

CGR of the HIV genome (NCBI Refer-

ence Sequence: NC_001802.1). Here 

we reuse Figure 1 from ’Deep learn-

ing on chaos game representation 

for proteins‘ by Löchel et al., 2020, 

reproduced by permission of Oxford 

University Press.

FIGURE 3: Schematic structure 

of a CNN. Red: input neurons; yel-

low: convolutional or pool neurons; 

green: feed forward neurons; blue: 

output neuron.

DEEP-iAMR – IDENTIFICATION OF NEW ANTIMICROBIAL RESISTANCE TARGETS BY HIGH-THROUGHPUT DEEP LEARNING
PREDICTION REQUIRED - PHENOTYPING & MODELLING OF CELLULAR PROCESSES USING AI

https://academic.oup.com/bioinformatics/article/36/1/272/5521624

DEEP-iAMR – IDENTIFICATION OF NEW ANTIMICROBIAL RESISTANCE TARGETS BY HIGH-THROUGHPUT DEEP LEARNING
PREDICTION REQUIRED - PHENOTYPING & MODELLING OF CELLULAR PROCESSES USING AI
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SCALABLE DATA PROCESSING AND 

USER-FRIENDLY BIOINFORMATICS 

APPLICATIONS IN THE de.NBI CLOUD

Due to the tremendous progress in the 

field of DNA sequencing, character-

izations of pathogenic bacteria have 

changed considerably over the last de-

cades. Today, bacterial genomes can be 

deciphered in many laboratories world-

wide within a few hours. As a result, large 

amounts of raw sequencing data need 

to be analyzed in scalable and automat-

ic manners to fully exploit this genetic 

treasure trove and extract all information 

encoded therein. Moreover, the analysis 

of such sequence data via modern DL ap-

proaches requires vast and standardized 

training data sets of the highest quality. 

Therefore, large numbers of collected 

and sequenced pathogenic bacterial ge-

nomes are automatically processed in 

the de.NBI Cloud to apply strict quality 

controls and finally transform raw se-

quencing data into higher-level genome 

characterizations usable as input fea-

tures for different DL approaches. Hence, 

as a first data processing step, raw se-

quencing data are filtered and revised 

to meet strict quality requirements and 

to streamline the subsequent assembly 

process resulting in bacterial genomes. 

In a second step, these genomes are then 

annotated to assign genomic features, 

e.g. genes and regulatory elements. Fur-

thermore, all genomes are deeply charac-

terized by various insilico analyses as for 

example the detection of AMR genes and 

virulence factors. High standards of cu-

ration enable comparison to high-quality 

reference genomes to detect individual 

mutations, e.g. SNVs. To distribute the 

computational workload of the analysis 

of these large datasets and to exploit the 

vast capacities of modern cloud com-

puting infrastructures as, for instance 

the de.NBI Cloud, all data processing 

and analysis workflows are implemented 

using Nextflow - a state-of-the-art work-

flow management system [6]. Finally, this 

information is automatically collected 

and used as standardized input features 

for DL models.

As soon as successful DL models have 

been sufficiently trained and validated 

they will be used to implement reusable 

bioinformatics software tools for im-

proved AMR predictions. In order to con-

duct reproducible analysis workflows and 

to provide these tools to the scientific 

community, resulting software tools will 

therefore be packaged and distributed 

via modern containerization techniques 

like, for instance, Docker and Podman. 

By doing so, researchers are enabled to 

scale out their analysis within high-per-

formance or cloud computing infra-

structures in order to meet the growing 

computational requirements of ever in-

creasing amounts of data.

      CONCLUSION & OUTLOOK

The huge increase of genome-based 

data from bacterial genome sequenc-

ing studies represents a scientific 

treasure trove for developing robust, 

rapid, and validated approaches to 

predict antimicrobial resistance. How-

ever, much information remains hid-

den in the data due to its sheer amount 

and the implied requirements for suit-

able data analysis strategies and IT in-

frastructures. Modern DL approaches 

are a promising tool to address these 

issues. Within the project Deep-iAMR 

we will use deep neural networks to ex-

ploit the hitherto unknown genetic in-

formation hidden in the genomic data 

to improve the prediction of AMR re-

sistances insilico. In combination with 

our genotype-phenotype studies it will 

potentially help to identify new targets 

for the development of new antibiot-

ic drugs and provide new insights for 

the rational assessment of treatments 

against resistant bacterial pathogens.
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COMPUTER-BASED IMAGE ANALYSIS AND CELLULAR PHENOTYPING
DEEP LEARNING FOR ANALYZING MICROSCOPY IMAGES 

Analyzing high-throughput and high-con-

tent microscopy image data is import-

ant for elucidating cellular processes to 

better understand diseases and to find 

suitable medical treatments. Typically, 

enormous amounts of digital image data 

are generated in biological experiments. 

However, accurate and efficient com-

puter-based analysis of microscopy im-

age data poses a number of challenges. 

Recently, deep learning methods within 

the field of artificial intelligence emerged 

which have a high potential to improve 

automated image analysis. 

DEEP NEURAL NETWORKS

Deep learning is a subfield of machine 

learning within artificial intelligence. The 

basis of deep learning methods are deep 

neural networks, which consist of mul-

tiple layers: An input layer, multiple hid-

den layers, and an output layer (Figure 1).  

These artificial neural networks model 

the function of the human brain using 

multiple connected artificial neurons 

(also denoted as perceptrons). An artifi-

cial neuron has multiple inputs, and com-

putes the weighted sum over the input 

followed by a non-linear activation func-

tion (Figure 2). The weights are learned 

during training from sample images us-

ing backpropagation, which is a gradi-

ent-based optimization method. 

Multiple artificial neurons build one net-

work layer. The fundamental layer type 

is a fully connected layer, where every 

neuron in one layer is connected to all 

neurons in the previous and the next lay-

er. The layers are stacked to generate a 

multi-layer neural network (also denot-

ed as multi-layer perceptron). Networks 

with multiple (hidden) layers are called 

deep neural networks in comparison to 

shallow networks.

Besides fully connected layers, there ex-

ist other types of layers. Important are 

convolutional layers, which perform a 

convolution on the input data using mul-

tiple kernels to generate different feature 

maps. A network which contains convolu-

tional layers is called Convolutional Neu-

ral Network (CNN). CNNs are powerful in 

processing multi-dimensional data such 

as images since they learn a hierarchical 

representation of features. In addition to 

FIGURE 1: General architecture of a deep neural network.

Automated analysis of microscopy image data is important 

to elucidate cellular processes. However, analyzing such data 

poses a number of challenges. Recently, deep learning methods 

within the field of artificial intelligence emerged which yield 

superior results compared to classical methods. Deep learning 

methods use deep neural networks and are typically trained 

from example data. We describe deep learning methods for 

computer-based image analysis of cell microscopy data.

DEEP LEARNINGFOR ANALYZING MICROSCOPY IMAGES Computer-Based Image  Analysis and Cellular  Phenotyping

Input Hidden layers Output
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feedforward neural networks which con-

tain only forward connections, there also 

exist Recurrent Neural Networks (RNNs) 

which are suited to process sequential 

data. RNNs contain blocks with loop con-

nections to represent information from 

previous sequential steps. 

Training of deep neural networks can be 

performed supervised, semi-supervised, 

or unsupervised. For supervised learn-

ing, annotated (labeled) data is required. 

Since labeling of data is generally difficult 

and time consuming, semi-supervised 

and unsupervised learning methods have 

been introduced. A general problem of 

network training is overfitting, which oc-

curs when the complexity of the model is 

high compared to the amount and vari-

ety of labeled data.  Then the model can 

fit the training data very well, but is not 

able to generalize well to unseen data. To 

improve the generalization capability of 

a neural network, regularization can be 

used. An often used technique is dropout, 

where single neurons are temporarily re-

moved during training.

A main advantage of deep learning meth-

ods is that the features are learned au-

tomatically, whereas classical machine 

learning methods employ hand-crafted 

features. This is important for difficult 

tasks such as automated analysis of cell 

microscopy images.

DEEP LEARNING FOR COMPUTER -

BASED IMAGE ANALYSIS 

Deep learning methods can be used for 

different kinds of data. In particular, such 

methods have been applied to analyze 

natural video images and medical im-

ages. Deep learning methods have been 

shown to outperform classical methods 

and they partially exceed the perfor-

mance of human annotation [1, 2].

A central task of computer-based image 

analysis is segmentation. The aim is to 

partition an image into a set of mean-

ingful regions. In the case of microscopy 

images, it is often important to identify 

cells and to distinguish them from the 

background. Cell segmentation is a pre-

requisite to quantify cell properties such 

as size, shape, and signal intensity. This 

is required in many applications and de-

noted as cellular phenotyping. However, 

cell segmentation in microscopy images 

poses a number of challenges such as 

high image noise, low image contrast, 

inhomogeneous image intensities, and 

high variation of cell size and shape.

The Biomedical Computer Vision group 

at Heidelberg University headed by PD 

Dr. Karl Rohr is developing deep learning 

methods for accurate computer-based 

analysis of cell microscopy images. The 

aim is to improve automated quantifica-

tion of cellular phenotypes at the single 

cell level as well as to efficiently process 

large scale microscopy data. In particu-

lar, deep learning methods for cell seg-

mentation have been developed. The 

methods combine different types of neu-

ral network architectures such as con-

volutional neural networks and recurrent 

neural networks. This enables exploiting 

information at different image scales as 

well as performing iterative refinement of 

the segmentation result  [3, 4, 5]. A deep 

neural network with an hourglass shape 

and an encoder-decoder structure has 

been developed. The network comprises 

densely connected blocks, gated recur-

rent neural networks, pooling and unpool-

ing blocks, and residual blocks.

Network training is performed end-to-

end using example images. For the loss 

function, an extension of the cross-en-

tropy is used to deal with class imbal-

ance, and stochastic gradient descent is 

employed for optimization. To reduce the 

amount of manually annotated training 

images, data augmentation is employed. 

With this technique, the available anno-

tated image data is enlarged by applying 

different image transformations such 

as rotation, flipping, scaling, and image 

intensity changes. In addition, trans-

fer learning methods can be used. This 

means that the network is pre-trained on 

available annotated images from other 

domains, and then fine-tuned using im-

ages from the considered application.

The developed deep learning methods for 

cell segmentation have been applied to 

analyze high-throughput and high-con-

tent microscopy image data. Cell fluo-

rescence microscopy images and tissue 

images have been used to extract cellular 

phenotypes. An experimental compari-

son with classical image analysis meth-

ods such as local thresholding, k-means 

clustering, and random forest classifier 

showed that the deep learning methods 

yield superior segmentation results. An 

example segmentation result for a cell mi-

croscopy image is displayed in Figure 3.  

It can be seen that cells with high and low 

image contrast can be well segmented. 

The developed methods have been ap-

plied, for example, to segment cells in 

tissue images for subsequent quantifi-

cation of the length of telomeres (end of 

chromosomes) which can be exploited for 

medical diagnosis. This work has been 

carried out within the BMBF project Can-

cerTelSys. The development and appli-

cation of the deep learning methods has 

been benefitting from the de.NBI com-

puting infrastructure and cloud.

FIGURE 3: Deep neural network for segmentation of cell microscopy images.
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FIGURE 2: Artificial neuron.
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     CONCLUSION

We describe deep learning methods for 

computer-based analysis of microsco-

py images, which is important to eluci-

date cellular processes. Deep learning 

methods are based on deep neural 

networks. These methods improve the 

image analysis results compared to 

classical methods and are well suited 

to cope with the challenges of cell mi-

croscopy data. Automated image anal-

ysis and extraction of cellular pheno-

types from microscopy image data is 

important for biological research and 

to identify relevant targets for medical 

diagnosis and therapy.

      INFORMATION

For further information, please visit:
http://www.bioquant.uni-heidelberg.de/bmcv 
https://www.hd-hub.de/galaxy-image-analysis/

i



28 | 29

New image-based methodologies that enable to measure phenotypic effects of perturbations 

are increasingly being used to identify and characterize drug candidates early in the drug de-

velopment process. These methodologies promise to generate deep biological profiles about 

intended and unintended effects of pharmaceutical agents and aid the decisions about their 

further development. However, such increasingly deep data sets pose new challenges in their 

analysis and our ability to learn meaningful biological information. Here, we summarize recent 

approaches in the field and our efforts to create an integrated platform for the generation and 

analysis of image-based drug screens. This platform can predict a drug candidate mode of ac-

tion, learn from drug profiles for predicting their targets and off-target toxicities and evaluate 

opportunities for drug repurposing. We describe how artificial intelligence (AI) plays a key role 

in the analysis of large image data sets and supports analysis to derive target and biological 

profiles for pharmacological agents.

CHALLENGES IN DRUG DISCOVERY

Though new technologies and method-

ological breakthroughs enable drug dis-

covery research at an increasing pace, 

relatively few new drugs reach the mar-

ket. In drug discovery this trend is known 

as ‘Eroom’s law’ [1]. Concordantly, the po-

tential to deploy approved drugs in multi-

ple disease areas often remains unused. 

New strategies for drug development are 

therefore required to (1) shorten the de-

velopment time for new chemical or bio-

logical entities, (2) reduce the failure rate 

of candidates and (3) uncover re-purpos-

ing potential. 

One strategy broadly discussed has been 

to gain more comprehensive information 

on the biological effects of drug candi-

dates early in the drug development pro-

cess. The information gathered about a 

drug candidate’s biochemical properties 

and its effects on biologically relevant 

model systems can form comprehen-

sive profiles to identify nonspecific or 

ineffective chemicals and guide further 

drug development. Cell-free biochemi-

cal assays to identify pharmacologically 

active agents are widely used in drug 

development. However, unlike testing 

chemicals on biological models, such as 

cells, biochemical assays lack informa-

tion on biological characteristics of the 

drug candidate that are important for 

understanding their impact on a biologi-

cal system. Furthermore, each functional 

property of a new chemical is tested us-

ing a specific biochemical assay, leading 

to narrow functional profiles that lack 

the depths to comprehensively identify a 

drug candidate’s characteristics.

IMAGE-BASED PROFILING DELIVERS 

INFORMATIVE PROFILES

Image-based profiling of candidate com-

pounds promises to address key chal-

lenges of classical biochemical assays 

REmatch:  AI FOR DRUG DISCOVERY  AND REPURPOSINGImage-based profiling to create a  high-resolution reference map of  targetable cellular pathways
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by generating information-rich profiles 

in single assays. These phenotypic pro-

files can be used to quantitatively assess 

changes in shape, texture and staining in-

tensity of cells and are derived from mea-

suring a cell’s reaction to the drug based 

on microscopy images. AI aided comput-

er vision algorithms are used to extract 

numeric measurements from images of 

fluorescently stained cells that are later 

combined into profiles describing the 

different facets of cellular reactions. 

Thanks to modern laboratory automation 

this can be done by testing thousands of 

drugs in parallel.

These approaches, however, come with 

three major challenges: First the col-

lected data often comprise millions of 

microscopy images. A screen of 2000 

chemicals in four cell lines can amount 

to more than 2 TB of raw data. Second 

the speed of available algorithms limits 

rapid analysis of screening data sets. 

Analyzing this 2 TB of raw imagery would 

for example take up to 8000 CPU hours of 

pure computation. Furthermore, the lack 

of suitable models and reference profiles 

for data interpretation and exploitation 

complicate the wide-spread use of large-

scale image-based profiling for routine 

drug discovery pipelines. 

Extracted profiles often comprise hun-

dreds of data points, each describing a 

different feature measured on a single 

cell and having different levels of infor-

mation content towards the character-

istics of the investigated chemical. If 

integrated with prior information on drug 

candidates and reference drugs the pro-

files can be used to establish predictive 

models for drug re-purposing and models 

for off-target and mode-of-action pre-

diction [2,3]. Together, these approach-

es can be employed early in the drug 

development process and facilitate the 

cost-efficient early filtering of successful 

and failing candidate compounds. 

A PROOF-OF-CONCEPT KNOWLEDGE 

BASE OF DIVERSE PROFILES

In an ERC funded Proof-of-Concept proj-

ect we developed REmatch, a technology 

platform that integrates an optimized im-

age-based profiling assay [3], a diverse 

set of relevant biological cell line mod-

els [4,5], and an optimized pre-process-

ing pipeline with AI models for improved 

predictions. The goal of this project has 

been to create a diverse reference data-

base of phenotypic profiles allowing to 

chart a comprehensive map of the drug 

target space. One idea to achieve this 

goal is to test a large collection of chem-

icals in a biologically diverse set of cellu-

lar models in an image-based screening 

campaign (Figure 1A). With the help of the  

de.NBI Cloud to scale our prototype as 

a cloud infrastructure millions of imag-

es could then be processed through a 

feature extraction pipeline leading to a 

collection of thousands of profiles in as 

little as seven days of computational pro-

cessing time (Figure 1B). In a next step, 

new algorithms are used that are capa-

ble of extracting the most relevant infor-

mation from the profile collection. This 

makes it possible to find the most active 

chemicals and reduce data complexity 

while conserving a maximum of informa-

tion (similar to filtering a clear voice in a 

noisy phone call). Furthermore, novel ap-

proaches are used to collect a reference 

set of profiles for well annotated chemi-

cals as an anchor point for teaching an AI 

to distinguish different drugs according 

to useful characteristics (Figure 1C).

A MAP OF HIGHLY ACTIVE  

REFERENCE COMPOUNDS

To chart a map of signalling pathways 

affected by the drug within a cell the 

extracted profiles of all drugs can be 

reduced to the most informative parts 

and arranged in a clustered heat map 

of activities. Here, signalling pathways 
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FIGURE 1: Image based drug profiling 

for drug discovery. (A)  By image-based 

profiling diverse sets of cell lines are 

screened against large chemical com-

pound collections. (B)  Each treatment 

is then imaged using fluorescent mi-

croscopy and images are analyzed us-

ing specialized platform technologies 

such as the cloud-based REmatch. 

(C) Novel data integration methods 

maximize information content while 

reducing data dimensionality prior to 

machine learning model training.
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 CONCLUSION & OUTLOOK

Image-based profiling is one of the 

most promising avenues to acceler-

ate drug discovery, detect off-target 

effects early and enable re-purpos-

ing of drugs. The ability to collect 

large amounts of image data in a 

fast manner, opens new avenues to 

collect rich information profiles on 

chemical compounds within biologi-

cally relevant contexts. This however 

comes with significant challenges 

based on the size, complexity and 

high dimensionality of the data pro-

duced. With the support of an ERC 

Proof-of-Concept grant we devel-

oped REmatch, a fully integrated 

technology platform for screening 

perturbations of cellular phenotypes, 

extracting information from large 

image data sets and interpretation  

 

 

of resulting phenotypic profiles 

for prediction of drug characteris-

tics. We created a reference map 

of compound target pathways and  

developed a new pre-processing 

pipeline. AI models provide solutions 

for compound characterization, 

specificity assessment and re-pur-

posing. Applied to large chemical 

compound collections such AI mod-

els will reduce required resources 

throughout the pre-clinical phases 

of drug development by predict-

ing biological properties based on 

‘learned’ phenotypic profiles. Future 

directions include developing plat-

forms for additional applications 

such as context-dependent profiles 

of drug effects on genome-edited 

cellular contexts. 
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FIGURE 2: Image-based profiling creates a reference of rich profiles for compound characterization. 

(A) In an optimized visual layout of active compounds, clusters of compounds with shared targets form. 

Thereby a map of compounds with different target classes is charted and serves as the optimal input 

for predictive modelling. (B) These models can be used to predict targets of yet unseen compounds, 

highlight potential re-purposing and evaluate target specificity. Red = candidate drugs, Black = known 

drugs, grey = other

can be understood like the wirings and 

switches that run the inner workings of a 

cell. Clustering the chemicals by the ways 

they change the profiles of the cells then 

firstly separates chemicals that show a 

visible effect on the cells versus chemi-

cals that had no impact on the look and 

shape of cells. Secondly, clustering also 

sorts chemicals into smaller separated 

groups, spatially laid out on a kind of map  

(Figure 2A). If two chemicals locate next 

to each other on this map and by that fall 

into the same cluster this is indicative 

of shared properties of the chemicals 

in that cluster. Thus, the layout can also 

be understood as a map of shared char-

acteristics among grouped chemicals. 

In the shown example, compounds tar-

geting, for example, different kinds of 

molecular switches like specific kinases, 

DNA damage response genes or the pro-

teasome were among the groups that oc-

cupy specific areas of the map.

A POWERFUL MODEL TO CHARAC-

TERIZE NEW CANDIDATE DRUGS

Artificial intelligence trained on the basis 

of this reference map can help to solve 

three specific tasks in drug discovery 

(Figure 2B). One can predict modes-

of-action (which molecular switches it 

mainly affects) for formerly unseen com-

pounds. This guides decisions on where 

to lead the development of a drug next 

in a precise and unbiased way. Further-

more, models based on a reference map 

can be used to sort old and new com-

pounds across a broad spectrum of mo-

lecular targets. By showing, for example, 

how drugs used to treat depression act 

like chemo therapeutics when applied 

on cancer cells this highlights drugs with 

potential uses in more than one specific 

medical indication. This is widely referred 

to as re-purposing. Lastly, these analyses 

reveal opportunities to assess the target 

specificity of many compounds simul-

taneously and thus allow fast filtering 

of compounds for their specificity. One 

can picture this process analogues to an 

email spam filter that browses through 

thousands of emails and filters out those 

that are unspecifically sent to many unre-

lated recipients.
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Cancer is a major public health and eco-

nomic issue and its burden is ever in-

creasing. Only in the US, it accounts 

for $90 billion in direct medical costs. 

It costs $2.7 billion to develop a cancer 

drug. About 9.5 million people die of can-

cer every year [1]. This is higher than the 

population of some of the biggest cities 

in the world. Our Arcas project aims to im-

prove this situation by employing state-

of-the-art data integration and analysis 

methods on top of decades worth of ge-

nomics know-how. 

WHY IS CANCER BURDEN SO HIGH?

Developing drugs and getting them to pa-

tients is a long and time consuming pro-

cess. First, a compound that needs to get 

to patients, has to go through pre-clinical 

research and different phases of clinical 

trials. Next comes the approval process, 

and finally doctors have to prescribe and 

believe that it could help the patient. 

Sometimes such drugs need to be listed in 

the guidelines in order to be prescribed -  

even if they are approved. It’s safe to say 

that there are many inefficiencies in each 

step of this process.

The most recurring or impactful reason 

for these inefficiencies is an overly sim-

plistic and narrowly focused approach in 

different parts of the process chain. Here 

is an example: We say cancer is a disease 

of the genome, however,  cancer patients 

rarely get their genome sequenced, and 

interpreted. When they do, only a couple 

of hundred genes are sequenced.  Infor-

mation, such as imaging, and histopatho-

logical staging etc. is useful, but provides 

a limited picture of the disease. As a re-

sult, if you do not take the whole genome 

into account, a lot of information goes 

missing. This is the case for  therapeutic 

decisions, and also in drug development.

It is now clear that response to therapy, 

especially for targeted drugs, is strongly 

Cancer is a disease of the genome, however, drug development and diagnostics 

do not make full use of genomic technologies and machine learning methods for 

decision making processes such as patient stratification and biomarker discov-

ery. With our project we are aiming to change this and bring multi-omics and 

state-of-the-art deep learning methods to diagnostics and drug development 

for oncology. We show that this approach is more performant than others and 

works for multiple cancer types. 

DEEP LEARNING-BASED CANCER 
PATIENT STRATIFICATION
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dependent on cancer's genetic, epigen-

etic, transcriptomic makeup of the tu-

mor, as well as tumor microenvironment  

(Example: WINTHER Trial [2]). All of  

these vary substantially between differ-

ent cancers, even from the same tissue. 

So, drug responses must be evaluated 

in relation to a cancer's genotype/epig-

enotype/transcriptome. Moreover, many 

drugs will fail simply because they are ef-

fective only on a subset of cancers, which 

was not initially recognized at the time of 

the trial.

MULTI-OMIC PATTERNS FOR CLINI-

CAL VARIABLE MODELING

One way to eliminate these problems is 

to accept that clinical variables, such as 

drug response, are driven by genome/

transcriptome/epigenome patterns and 

not just by mutations of single genes. 

Once we accept that, we have to have 

efficient methods for analyzing  multilev-

el data sets, such as multi-omics, from 

cancer biopsies or tumor models. Effi-

cient integration of multi-omics data will 

provide an assumption-free or assump-

tion-sparse, data-driven and integrative 

approach for modelling clinical variables.

For our Arcas translational project, we 

have developed such a framework which 

uses deep learning to integrate any kind 

of omics data and discover molecular 

patterns, or so-called latent factors. La-

tent factors can be used for 1) clustering/

subtype detection or mapping disease 

models and primary tumors – analogous 

to a biological search engine. Imagine 

you can input multi-omics data for your 

disease models and we can tell you which 

primary cancers are best represented 

by those models. In addition, 2) we can 

model variables such as survival and drug 

response. Furthermore, 3) we can also 

interpret the latent factors, and under-

stand which molecular mechanisms, or 

pathways they correspond to.

PATIENT STRATIFICATION USING 

DEEP LEARNING

Molecular patterns or latent factors can 

stratify patients based on prognosis or 

response to drugs, or any other clinical 

variable. We have applied part of Arcas 

technology on colorectal cancers [3]. 

Colorectal cancers have four subtypes 

defined using mainly gene expression 

profiles. These subtypes are known as 

consensus molecular subtypes or CMS. 

The consortium defined four subtypes 

that have different molecular character-

istics that correlate with survival to some 

degree, however 19 % of the patients could 

not be assigned to a particular subtype.

If these molecular patterns, i.e. latent 

factors, contain relevant information, we 

should be able to predict the CMS from 

them. In Figure 1 (left panel) we are look-

ing at a receiver operating characteristic 

curve, or ROC curve, which shows how 

good a classifier is. In our case, the ROC 

curve shows that latent factors are able 

to predict CMS subtypes. We compare 

our method with other methods that also 

produce latent factors or the related prin-

cipal components. In all cases, our pre-

diction accuracy is higher.
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FIGURE 3: Arcas platform im-

proves survival prediction over 

using clinical features.

FIGURE 2:  Refined subtypes for colorectal cancer. Green and blue dots rep-

resent CMS2 subtype, however separating this subtype into 2 subtypes as 

suggested by latent factor clustering makes more sense in terms of different 

survival characteristics of these two groups. The plot obtained from [3].

2 1 0 1 2 3 4 5 6

reduced dimension 1 (UMAP)

0

1

2

3

4

5

6

r
e
d
u
c
e
d
 
d
i
m

e
n
s
i
o
n
 
2
 
(
U

M
A
P
)

CMS label

A

CMS

CMS1

CMS2

CMS3

CMS4

2 1 0 1 2 3 4 5 6

reduced dimension 1 (UMAP)

0

1

2

3

4

5

6

r
e
d
u
c
e
d
 
d
i
m

e
n
s
i
o
n
 
2
 
(
U

M
A
P
)

maui

B

maui

0

1

2

3

4

5

CMS label

maui

n
=

8
5

n
=

3
3

n
=

5
5

n
=

7
4

n
=

6
6

n
=

1
0
6

C

0 1 2 3 4 5

Cluster

Mucin type O-Glycan biosynthesis

Vasopressin-regulated water reabsorption

Intestinal immune network for IgA production

Vibrio cholerae infection

Oxidative phosphorylation

Non-alcoholic fatty liver disease (NAFLD)

Antigen processing and presentation

Inflammatory bowel disease (IBD)

Herpes simplex infection

Tuberculosis

Folate biosynthesis

TGF-beta signaling pathway

Arginine and proline metabolism

Mineral absorption

Pancreatic secretion

ECM-receptor interaction

Protein digestion and absorption

Focal adhesion

ErbB signaling pathway

Wnt signaling pathway

Hippo signaling pathway

D

0

150

300

450

600

E
n
r
i
c
h
m

e
n
t
 
s
c
o
r
e

0 20 40 60

timeline (months)

0.0

0.2

0.5

0.8

1.0

o
v
e
r
a
l
l
 
s
u
r
v
i
v
a
l

log-rank p=0.000

3

n=74

5

n=106

FIGURE 1:  Predicting subtypes using latent factors obtained via deep learn-

ing is more accurate. Left, accuracy in comparison to other tools. Right, 

Representation of colorectal tumors by reducing latent factors to 2D. Plot 

obtained from [3]. 
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   CONCLUSION & OUTLOOK

As sequencing prices drop, the 

data needed to build and run our 

models are getting easier to gen-

erate. In the near future, liquid bi-

opsies and biopsies will be routine-

ly assayed by multi-omics methods. 

Integrating and making sense of 

such datasets is the key to improve 

drug development and diagnos-

tic processes. Our Arcas platform 

provides actionable insights from 

multi-omics datasets from tumor 

biopsies or disease models. 

REFERENCES:  [1] Global Cancer Observatory, https://gco.iarc.fr/today/home [2] Rodon J et al. 2019 Nature Med, 25, 
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In Figure 1 on the right side, we color- 

coded the 2D projection of latent factors 

based on the CMS status. Each dot is a 

primary tumor colored by the CMS status. 

You can see separation of colors, which 

means there is information in latent fac-

tors about CMS status.

We can further refine the subtypes using 

this technology. You might have noticed 

that there are more clusters than the col-

ors based on CMS in Figure 1. If we apply 

a clustering algorithm, we can find six 

clusters. The biggest difference is that 

we separate CMS2 into two clusters. In 

terms of survival, this actually makes a lot 

of sense. In Figure 2 (right panel), we show 

survival curves of these new two clusters, 

which are very different. It could be, there-

fore, justified to break-up CMS2 to two 

subtypes.

One of the things we should emphasize is 

that this method is not limited to a spe-

cific cancer type. It works in any data set 

that has multi-omics information, includ-

ing tumor models, such as cell lines, PDX 

or organoids. In fact you can integrate cell 

lines, PDX, and primary tumors using our 

method – something that is hard to do 

normally.

We have run this on the cancer genome 

atlas data sets that have at least 100 sam-

ples and in this plot, we are showing how 

much we improve the C-index. C-index is 

a measure of survival prediction accu-

racy. In Figure 3, we show what happens 

when we try to predict survival just by us-

ing clinical variables, such as age, gender, 

and tumor stage -  in comparison to clin-

ical variables + latent factors . As you can 

see, in many cancers, when using latent 

factors, we push this accuracy metric to 

a higher level.
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The overarching goal of the Medical Im-

age and Data Analysis Lab (MIDAS lab) 

at the University Hospital in Tübingen is 

to develop, implement and validate ma-

chine learning methods for reliable and 

efficient reconstruction and analysis of 

medical image data. Our focus lies on an-

alyzing multiparametric clinical imaging 

data from Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT) and 

Positron Emission Tomography (PET) as 

well as large-scale data from epidemio-

logical imaging studies.

INFRASTRUCTURAL AND COMPUTA-

TIONAL DEMANDS

Besides scientific and medical aspects, 

the main challenge in this field of re-

search lies in the high demand for com-

putational resources for (i) safe storage  

of medical image data (ii) efficient pro-

totyping of algorithms and (iii) training  

of large deep learning models. The de.NBI 

Cloud provides the necessary infrastruc-

ture that allows us to flexibly and effi-

ciently plan and execute our research 

projects.

The following example illustrates the  

specific design of a typical project in 

medical imaging research: As part of 

a DFG-funded project (‘Assessment of 

organ-specific biological age based on 

whole body MR data from the German Na-

tional Cohort MR Study’ project number 

428219130), we aim to establish a frame-

work for quantification of the biological 

age of organs and tissues based on phe-

notypes drawn from whole body imaging 

data. The underlying data is provided by 

two large epidemiological imaging stud-

ies, the German National Cohort Study 

(NAKO) and the UK Biobank study. To-

gether, these growing data sets already 

contain about 50,000 whole body 3D MRI 

data sets as well as corresponding MR 

examinations of specific organs such as 

the brain or the heart. The raw data alone  

require storage space of up to 100 TB. 

However, not only the size of the entire 

data sets is challenging; also, the size 

of single image volumes demands the 

use of GPU resources with high memory  

capacities allowing for implementation 

and training of 3D convolutional neural 

networks on entire data sets for regres-

MEDICAL IMAGE ANALYSIS: A CHAL-

LENGING TASK

Acquisition, reconstruction and analy-

sis of medical imaging data is a highly 

challenging task due to rapidly growing 

amounts of acquired data, increasing 

complexity of generated images and 

broadening clinical demand for quan-

titative analyses. These developments 

put strain on medical organizations and 

clinical specialists who often struggle to 

meet the expectations. Already today, 

large parts of medical image data can 

only be analyzed partially with an often 

narrow focus. 

Recent developments in the field of ma-

chine learning, especially for computer 

vision, have opened a perspective for 

computer-assisted analysis of medical 

images that could contribute to more ef-

ficient clinical workflows and potentially 

more accurate diagnostic results.

While the methodological developments 

of the past decade, mainly based on deep 

learning techniques, have been impres-

sive, the translation of these tools to 

clinical application still poses challenges 

that are associated with algorithm ro-

bustness, estimation of algorithm uncer-

tainty, as well as ethical and legal ques-

tions.

MIDAS – MEDICAL IMAGE AND DATA ANALYSIS – WHY THE COMPUTATIONAL INFR ASTRUCTURE MATTERS
PREDICTION REQUIRED - PHENOTYPING & MODELLING OF CELLULAR PROCESSES USING AI

Automated analysis of medical image data is a challenging task 

requiring advanced data analysis techniques including machine 

learning methods as well as large and complex data sets. A 

prerequisite for tackling medical image analysis tasks is a  

dedicated and optimized computational infrastructure that 

enables secure data storage, flexible access to data for 

researchers as well as highly performing computing hardware 

for machine learning applications. This article provides a short 

overview of how the Medical Image and Data Analysis (MIDAS) 

research group of the University Hospital Tübingen utilizes 

the de.NBI infrastructure for research projects in the field of 

medical image analysis.

MIDAS – MEDICAL IMAGE  AND DATA ANALYSIS –WHY THE COMPUTATIONAL  INFRASTRUCTURE MATTERS
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FIGURE 3: Simplified depiction of our computa-

tional infrastructure. Anonymized clinical data can 

be processed within the secure hospital environ-

ment using machine learning models trained on 

the de.NBI Cloud environment (PACS = Picture Ar-

chiving and Communication System, VM = Virtual 

Machine, GPU = Graphics Processing Unit).

FIGURE 2:  Example of a deep learning architec-

ture for age estimation on entire 3D MRI data sets. 

The large size of image volumes requires the use 

of GPU-based computing [1].

sion, classification and segmentation 

tasks within this project.

At the moment, members of our research 

group, affiliated students as well as coop-

eration partners can simultaneously work 

on the de.NBI Cloud infrastructure and 

thus contribute to advancing research on 

medical image and data analysis. Access 

to virtual machines running on the de.NBI 

infrastructure is provided by the Secure 

Shell Protocol (SSH) enabling direct ter-

minal access in a comfortable working 

environment with predefined permis-

sion. Thus, the de.NBI infrastructure has 

become an integral part of our research 

environment.

Compared to our previous infrastructure 

consisting of separate workstations and 

scattered storage, this environment has 

not only substantially increased the effi-

ciency of research and cooperation but 

has made larger projects feasible that 

had not been possible before.

The combination of the de.NBI infrastruc-

ture that allows for training of complex 

machine learning models together with 

local computation infrastructure within 

the secure hospital environment that can 

be used for deployment of trained models 

offers both, a high degree of safety and 

flexible, high performing computational 

resources.
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FIGURE 1:  Examples for automated medical image 

analysis tasks: Automated segmentation of ab-

dominal organs on MRI scans (left, masked in blue). 

Automated detection and segmentation of tumor 

metastases on PET scans (right, masked in red)
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Crops are humankind’s vital source of food, feed, oil, and fibers, 

and their performance was deliberately improved ever since 

the early years of plant domestication. Modern phenotyping 

provides impartial computer vision-based and molecular tools 

for crop improvement. Visualizing previously imperceptible 

features enables the next level of understanding the relation-

ship between genome, environment, and plant performance. 

An example is Microphenomics that helps to dissect the resis-

tance mechanisms involved in the early microscopic stages of 

plant-pathogen interactions. Deep learning tools enable ex-

tracting valuable phenotypic information from the enormous 

amount of complex microscopy image data.

HIDDEN PHENOTYPESMicrophenomics reveals novel  disease resistance genes using deep learning and automated microscopy

USING PLANT BIOINFORMATICS FOR 

HIGH-THROUGHPUT ANALYSES OF 

PHENOTYPES

The German Crop BioGreenformatics 

Network (GCBN) service center is part of 

the German Network for Bioinformatics 

Infrastructure (de.NBI) and provides tai-

lored services and training for plant re-

search. With the specific focus on crops, 

the GCBN activities are closely linked 

to practical utilization, e.g., in essential 

breeding programs for feed and food.

The continuous progress in sequencing 

technologies enormously accelerat-

ed genotype unlocking. In contrast, the 

acquisition of high-dimensional data 

on valuable organism characteristics  

(phenotypes) involves specific chal-

lenges and often requires tailor-made 

develop ments. Phenotyping is required 

to to better understand the pathways 

that connect genotypes to phenotypes 

and identify the genetic basis of com-

plex traits. Advancement of automation 

of phenotyping of phenotyping raised a 

new field called phenomics. As a con-

sequence, more and more data that 

needs to be adequately analyzed is being  

generated. New methods focusing on 

making the flood of data manageable 

and analyzable are being developed. Ar-

tificial intelligence (AI) methods like deep 

learning are being applied with growing 

success. Phenotyping of interspecies 

relations, such as host-pathogen inter-

actions or microbiomes, adds another 

level of complexity and new challenges. 

In plant-pathogen interactions, the ini-

tial stages of the infection are micro-

scopic events, and their phenotyping 

was strongly hampered by the effort re-

quired for manual microscopy and the 

lack of high-throughput phenomics tools. 

To meet this challenge, we have devel-

oped the microphenomics approach 

that combines high-throughput auto-

mated microscopy with artificial neural 

network tools for extracting phenotypic 

information from complex microscopy 

images of plant-pathogen interactions. 

The challenges are to analyze such pheno-

typing data and to integrate it into de.NBI  

services for plant researchers.

Artificial neural networks were initially 

developed to simulate the function of 

human brain cells inside a computer al-

gorithm to learn and autonomously make 

decisions. The learning process requires 

feeding the network with labeled training 

data. A special feedback algorithm re-

sponds to the prediction precision and 

adjusts the network’s weighted associ-

HIDDEN PHENOTYPES – MICROPHENOMICS REVEALS NOVEL DISEASE RESISTANCE GENES USING DEEP LEARNING AND AUTOMATED MICROSCOPY
PREDICTION REQUIRED - PHENOTYPING & MODELLING OF CELLULAR PROCESSES USING AI
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FIGURE 2: The BluVision Micro- and Macro-

phenomics pipeline. The whole experiment 

is performed in a highly controlled environ-

ment to minimize the influence of non-ge-

netical variations. Detached leaf segments 

are mounted on special agar plates and in-

oculated with a controlled amount of patho-

gen spores. After incubation, the leaves are 

scanned on one or more of the phenotyping 

modules. The obtained quantitative phe-

notype, combined with high-throughput 

genomics data, can be used, for instance, 

for performing genome-wide associations 

studies (GWAS) for discovering genes and 

genomic regions associated with specific 

resistant genotypes.

ations according to the learning rules 

until an optimum is achieved. A properly 

trained neural network model can predict 

objects in complex images or understand 

text documents with very high accuracy.

Convolutional Neural Networks (CNN) are 

a class of deep neural networks common-

ly applied to analyze images. A typical 

CNN has a multilayer architecture with in-

put and output layers and several hidden 

layers, which are important for learning 

specific abstract features. For achieving 

high accuracy, a neuronal network needs 

a large amount of training data. To de-

velop some of our models, we have used 

about 10,000 images of each class.

Automated microscopy applications 

were significantly accelerated in recent 

years by releasing on the market several 

so-called digital slide scanners.  One of 

the most advanced devices is the Zeiss 

Axio Scan.Z1, used in our system, that 

can digitalize several hundred samples 

per day with a resolution sufficient to 

recognize subcellular structures on mul-

tiple Z-levels. However, such high pro-

ductivity is coupled with generating a 

massive amount of primary image data, 

which requires a very efficient software 

algorithm for image processing and anal-

ysis. Our system uses the advantages 

of GPU computing, which employs the 

graphic processing units (GPU) as a co- 

processor, enormously accelerating the 

computing process.

OUTLINE – THE BLUVISION  

FRAMEWORK

By combining the methods described 

above, we have designed a Microphenom-

ics framework for high-throughput and 

precise phenotyping on microscopic and 

macroscopic levels of plant-pathogen in-

teractions named BluVision (Figure 1). 

The framework is aimed primarily at 

phenotyping powdery mildew disease of 

barley and wheat. The phenotypes deliv-

ered by the BluVision platform, combined 

with genomics data (Figure 2), allow the 

discovery of novel disease-resistant 

genes of high potential interest to plant 

pathologists and breeders. The high lev-

el of automation and throughput of the 

system allows the phenotyping of large 

collections of genotypes for genetics and 

genomics studies. Moreover, the system 

enables phenotypes that were hardly 

accessible with manual methods, such 

as precise quantification of the fungal 

hyphae area and finding rare infection 

events in ’near-nonhost‘ interactions 

(Figure 3).

The data is being organized according to 

the FAIR principles, with machine-read-

able metadata, assessable via a Web in-

terface, reusable, and interoperable. The 

framework allows complete pipelines for 

complex data analysis like building sta-

tistical models and Genome-wide asso-

ciation studies (GWAS). The results of the 

described approaches will be integrated 

continuously into de.NBI services and 

enables the users to access results from 

deep learning data analysis.

FIGURE 1:  The BluVision Micro- and Mac-

rophenotyping framework consisting of 

two modules for phenotyping on micro- 

and macro-scale, image analysis pipeline, 

and FAIR-compliant data management.

•Raw data preservation
•FAIR data management 
(LIMS)
•Machine readable data 
access

•Image processing
•Artificial Intelligence 
methods (Machine 
learning, Deep learning) 

•Microscopic phenotypes
•Early plant-pathogen 
interactions
•Cellular and sub-cellular 

level phenotyping

•Visible disease symptoms
•Organ-level phenotyping
•VIS-, Multi- and 
Hyperspec imaging

BluVision
Macro

BluVision
Micro

Data 
Management

BluVision
Image 

Analysis 
Pipeline

Detection of the colony's border  
and quantification of the area

CNN prediction visualisation

FIGURE 3:  Detection and quantification of 

barley powdery mildew (Blumeria graminis 

f.sp. hordei) colonies. The infected leaves 

are scanned on the BluVision micro module, 

which detects the colony number and pre-

cisely measures every colony’s area using 

Convolutional Neural Networks (CNN)-based 

software.
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MODEL SYSTEM  

POWDERY MILDEW

Crop protection is still mainly provid-

ed by applying chemical agents, many 

of which are strongly suspected to be 

harmful to the environment, biodiversi-

ty, and non-target organisms, including 

humans (EU directive 2009/128/EC). 

Achieving independence from chemi-

cal pesticides in the following decades 

while maintaining the economic bal-

ance requires a more profound knowl-

edge of the biology of plant-pathogen 

interactions and deeper employment 

of the natural and engineered plant 

disease resistance mechanisms. Bio-

logical models provide the intellectual 

frameworks needed to transform data 

into knowledge. The powdery mildew 

of barley and wheat are among the 

best-studied powdery mildews and 

an essential model for understanding 

plant-pathogen interactions, biotro-

phy, and plant immunity. The powdery 

mildew plant diseases are caused by a 

large group of obligate biotrophs fun-

gi of the order Erysiphales with over 

400 species that can infect more than  

10,000 plant species. They represent a 

significant threat in agriculture, affect-

ing both the quality and quantity of the 

food, feed, technical and ornamental 

crops. Powdery mildew colonies have 

fast and synchronous growth and can 

accomplish their life cycle and pro-

duce a massive amount of spores only  

within one week (Figure 4). The light 

spores can be spread by the wind on 

distances of hundreds of kilometers. 

The ability for sexual reproduction and 

high genotype diversity assign the pow-

dery mildews to the highest pathogen 

risk class.
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FIGURE 4: Development stages of wheat and barley powdery 

mildew fungi. The spore germination starts shortly after the 

contact of the conidiospore with the leaf surface (Day 0). In two 

days, microcolonies are formed, and in 5-6 days, the new conidia 

are produced and ready to be spread by the wind. 

Day 0 Day 3 Day 5
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BIOLOGICAL DATA 
MEETS AI –  OMICS, BIG DATA AND MACHINE LEARNING AS TOOLS TO ACCELERATE UNDERSTANDING OF BIO-LOGICAL MECHANISMS
The strengths of AI to tackle a specific problem based on data with a certain intel-

ligence leads to a new renaissance of the field. AI techniques applied to scientific 

discovery will quickly enable complex research challenges to be addressed that could 

never be solved by humans alone working within feasible time limits and resources. In 

the Life Sciences, it will allow us to understand and explore new cellular processes of 

a disease or a certain condition even on single cell level.
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Genome sequences of several hundred plant species have already been published and are tracked 

in www.plabipd.de. However, due to the ground-breaking improvements in sequencing techno-

logies, this number is rapidly increasing. To keep abreast with analysis of these genomes, it is 

necessary to be able to quickly and deterministically annotate protein functions. To this aim, we 

have developed the tool Mercator. Mercator v4 is based on more than 6000 specifically trained 

profile Hidden Markov Models that have been trained to specifically recognize land plant protein 

families. Here, we report on the use of these families for protein functional inference.

The recent introduction of long read se-

quencing technologies and their ever-im-

proving outputs and decreasing error 

rates have made it possible to decipher 

more and more plant genomes [1]. In-

deed, the assembly problem to generate 

one consistent genome out of the reads, 

can be considered as good as solved for 

most homozygous diploid plant species 

when using latest molecular techniques. 

With this breakthrough in mind, the plant 

community is faced with an unprecedent-

ed challenge: What to do with all these 

genomic data sets and how to compare 

and integrate genome data consistently? 

While human-readable annotation pipe-

lines such as AHRD exist, they are focused 

on human readability of protein descrip-

tions (e.g. ‘glucokinase’ instead of ‘similar 

to hypothetical protein from E. coli’) and 

did not provide a machine-readable clas-

sification nor semantic similarity based on 

broad plant biological concepts. 

Other endeavours like the GO ontology 

provide consistent ontological terms, but 

these suffer from often being generated 

adhoc and are thus inconsistently as-

signed between different plant genomes. 

Their assignment can be achieved using 

tools such as BLAST2GO [2] which, de-

spite its name, uses and cleverly com-

bines multiple information sources. How - 

ever, GO terms show redundancy, which 

can complicate inference and interpreta-

tion tasks.

We had developed the MapMan frame-

work for biological inference and machine 

learning tasks for plants by introducing 

redundancy reduced terms. Indeed, an 

independent assessment had shown that 

these terms outperformed the GO ontolo-

gy for some learning tasks [3]. However, 

similar to GO term assignments, it was 

necessary to develop a performant and 

deterministic system to classify novel 

proteins into this ontology. 

FROM SIMPLE SEQUENCE SIMILA-

RITY TO PROFILE HIDDEN MARKOV 

MODELS

To this aim, we had initially developed 

Mercator v3 [4], which was using simple 

sequence similarity and domain assign-

ments to determine protein function 

which informs about the role of individual 

proteins using similar ideas as BLAST-

2GO. However, this approach suffered 

from well-known problems of partial 

sequence similarities and hence wrong 

functional assignments as well as the 

problem of which sequences to use as 

templates and how to deal with conflict-

ing annotations. We initially addressed 

this by generating protein clusters, but 

have since come up with a machine learn-

ing based solution which has resulted in 

the Mercator v4 line of sequence classifi-

cation pipeline [5]. 

To this aim, firstly the known protein 

space was partitioned into protein sets 

using unsupervised sequence-based 

clustering. These clusters were then fur-

ther split or merged using multiple se-

quence alignments and by phylogenetic 

inference. The clusters were filtered by a 

known function assignable to the individ-

ual proteins of the cluster (preferably as 

published in a peer-reviewed article). Af-

terwards, protein sequences in optimized 

clusters were used to train individual 

sequence profile HMMs that capture the 

signature of a functionally distinct pro-

tein family e.g. all those sequences likely 

encoding for glucokinases, but not those 

encoding for other sugar kinases. These 

generated profiles were then subjected to 

a performance assessment and were fur-

ther improved until accuracy converged. 

In certain cases, it was therefore neces-

sary to have different HMMs representing 

the same biological function. 

Finally, the learned ensemble of HMM 

classifiers was used to annotate several 

plant genomes to assess their perfor-

mance and potential overlaps. Subse-

quently, performing sets were further 

improved in a supervised step. Given that 

each HMM was tuned by the multi-step 

learning process and since each HMM 

comprises its own detection thresholds, 

the results for each HMM ensemble are 

completely deterministic. An addition-

al advantage is that on the level of each 

HMM, one can compare sub-families 

across a wide range of plant genomes. 

This is because the computation inten-

sive steps of many to many sequence 

comparisons to infer clusters of ortholo-

gous proteins are foregone, by assigning 

a protein to a specific HMM. For example, 

if a protein from tomato is assigned to 

the HMM of glucokinase and another pro-

tein from watermelon is assigned to the 

same glucokinase profile, it follows that 

AI BASED METHODS  FOR PLANT PROTEIN  FUNCTIONAL INFERENCEUsing learned profile Hidden  Markov Models allows plant  genome comparisons
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these two proteins likely have the same 

function and that they must belong to the 

same protein family. Hence, it is possible 

to assign protein families by iteratively 

investigating new genomes, instead of 

recomputing protein family assignments 

between a set of genomes.

This allows to directly investigate ge-

nomes for the loss of protein families 

by simple comparisons as the machine 

learning output has greatly simplified 

comparison tasks. 

As an example, we have shown that the 

parasitic plant Cuscuta campestris seems 

to have lost multiple proteins involved in 

plastidial gene editing [5].

CURRENT STATE AND LATEST  

DEVELOPMENTS

This new pipeline is continuously updat-

ed, and new releases are made available 

on a yearly basis. Currently, it is possi-

ble to deterministically classify and thus 

functionally annotate about 50 % of all 

proteins in a land plant genome. As the 

functional classification is completely 

deterministic, it is easily possible to de-

termine potentially missing protein func-

tions as well as too low classification rates 

(indicating e.g. the inclusion of too many 

pseudogenes) also on a broad level in a 

genome. This is reflected in the web in-

terface to Mercator v4 which reports a ’fill-

rate‘ indicating the number of classes that 

were found at least once and thus informs 

about potential general completeness. 

For a general classification of land plant 

proteins, we currently develop unsuper-

vised methods to provide a full determin-

istic classification of the evolutionary 

conserved part of plant proteomes where 

a function can’t be assigned yet.

FROM GENOMES TO ANALYSIS

As Mercator v4 allows high throughput 

data analysis of genomes, it was applied 

to a selection of approx. 50 dicot plants 

and a red alga (Chondrus crispus) as an 

outgroup control, which were downloaded 

from the ENSEMBL Plants resource [6].  

For the outgroup control only about 25 % 

of the proteins could be classified in line 

with expectation given that Mercator v4 

was designed for land plant species. On 

the other hands more than 55 % of the 

proteins could be classified and assigned 

to families for species as diverse as  

Arabidopsis thaliana, kiwi and wild cotton 

in line with the predicted performances.

Using the direct comparison between the 

genomes allows to quality control differ-

ent genome datasets. Only investigating 

presence absence matrices, revealed 

wide spread apparent absence of genes 

related to photosynthesis across multiple 

but not all species. However, this is sim-

ply reflecting plastid encoded genes as 

the plastid genome was included in some 

reference genomes but wasn’t in others 

(Table 1). 

In addition, the Mercator v4 tree view, 

which puts classes into their biological 

context flagged the loss of individual 

genes in the potato annotation. In detail, 

a cytosolic glucotransferase (DPE2) as 

well as an isoamylase (ISA3) and a pullu-

lan-6-glucanohydrolase (PU1) all seemed 

to be lacking from the potato proteome 

annotation. However, given the impor-

tance of starch metabolism this seemed 

less likely. Indeed, all missing genes were 

present when analysing one of the most 

recent potato genome releases [7] which 

was based on newer sequencing technol-

ogies (Figure 1) highlighting the impor-

tance of new sequencing technologies 

and genome annotation quality control.

FIGURE 1:  Total protein number content of the 

original potato genome (blue), the latest analy-

sis (red) and for comparison content number in 

tomato (green).
CODE NAME Chloroplast A. chinensis A. trichopoda A. halleri A. lyrata A. thaliana A. alpina B. napus B. oleracea

1.1.1.1.1 component LHCb1/2/3 13 8 9 8 9 11 25 11

1.1.1.1.2 component LHCb4 2 1 3 3 3 3 6 3

1.1.1.1.3 component LHCb5 2 1 1 1 1 1 4 4

1.1.1.1.4 component LHCb6 2 1 1 1 1 1 5 1

1.1.1.1.5 component LHCq 1 1 1 1 1 1 2 1

1.1.1.2.1.1 component D1/PsbA YES 1 3 0 0 1 1 1 0

1.1.1.2.1.2 component D2/PsbD YES 0 0 0 3 1 0 0 1

1.1.1.2.1.3 component CP47/PsbB YES 1 1 0 2 1 1 0 1

1.1.1.2.1.4 component CP43/PsbC YES 0 0 0 2 1 1 4 1

1.1.1.2.1.5.1component alpha/PsbE YES 0 1 0 2 1 0 2 0

1.1.1.2.1.5.2component beta/PsbF YES 0 0 0 0 1 0 0 0

1.1.1.2.1.6 component PsbI YES 0 0 0 0 1 0 1 0

1.1.1.2.2.1 component OEC33/PsbO 3 1 3 3 2 2 10 5

1.1.1.2.2.2 component OEC23/PsbP 2 1 2 2 2 2 8 3

1.1.1.2.2.3 component OEC16/PsbQ 2 1 2 2 2 2 4 2

1.1.1.2.3 component PsbH YES 0 0 0 2 1 1 2 0

1.1.1.2.4 component PsbJ YES 0 0 0 0 1 0 0 0

1.1.1.2.5 component PsbK YES 0 0 0 1 1 0 0 0

1.1.1.2.6 component PsbL YES 0 0 0 2 1 0 0 0

1.1.1.2.7 component PsbM YES 0 0 0 0 1 0 0 0

1.1.1.2.8 component PsbR 1 1 1 1 1 1 6 1

1.1.1.2.9 component PsbTc YES 0 0 0 0 1 0 0 0

1.1.1.2.10 component PsbTn 5 1 2 3 2 2 9 3

1.1.1.2.11 component PsbW 3 1 1 1 1 1 8 7

1.1.1.2.12 component PsbX 6 1 1 1 1 2 6 2

1.1.1.2.13 component PsbY 2 1 1 1 1 1 5 3

1.1.1.2.14 component PsbZ YES 0 0 0 3 1 0 0 0

1.1.1.3.1 assembly factor (LPA1) 1 1 1 1 1 1 2 1

1.1.1.3.2 assembly factor (LPA2) 1 1 1 1 1 1 2 1

1.1.1.3.3 assembly factor (LPA3) 1 1 1 1 1 1 2 1

1.1.1.3.4 assembly factor (HCF106) 2 1 1 1 1 0 6 2

1.1.1.3.5 assembly factor (HCF136) 2 1 1 1 1 0 3 1

1.1.1.3.6 assembly factor (HCF243) 5 1 1 1 1 1 3 2

1.1.1.3.7.1 scaffold component HCF244 2 1 1 1 1 1 2 1

TABLE 1:  Analysis of a selection of ENSEMBL Plants Genomes 

for occurrence of proteins. The table shows the number of pro-

teins (corrected for splice isoforms) found in each genome.

   CONCLUSION & OUTLOOK

We have shown the capability of Mer-

cator v4 to deterministically annotate 

plant proteins in a plethora of land 

plant genomes drawing on unsuper-

vised and supervised machine learn-

ing techniques and to even use it for 

quality control purposes. The creation 

of each profile HMM requires a large 

amount of supervised data resulting 

in a highly accurate model for the pre-

diction of a protein function. Mercator 

v4 is restricted to annotate protein 

sequences, which belong to a protein 

family of known function. In addition, 

we are developing unsupervised meth-

ods to classify evolutionary conserved 

land plant proteins independent of the 

knowledge of a function. 
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Human-associated microbial communities, such as the gut microbiome, are 

characterized by a large diversity of organisms interacting with their host 

in complex ways. However, to date, the functions of individual microbial 

organisms or genes, let alone of the community as a whole in the context 

of the human superorganism, are rarely known. Researchers thus want to 

predict them - and machine learning-methods are ideally suited for recogni-

zing patterns in the complex data generated to study the gut microbiome. In 

this article, we will outline two machine learning applications, SIAMCAT and 

GECCO, developed for the discovery of microbial biomarkers and secondary 

metabolites, respectively.

MACHINE LEARNING FOR ELUCIDATING MICROBIOME FUNCTIONS Machine learning approaches for the characterization of microbialsecondary metabolism and  associations with host traits 
The human body is colonized by a stun-

ning diversity of hundreds of microbial 

species: prokaryotes, small eukaryotes, 

and viruses. Collectively, they are called 

the microbiome. Maturing sequencing 

technologies allowed us to study the hu-

man microbiome in new ways, circum-

venting the need for cultivation, which is 

challenging for many microbial species. 

In metagenomic sequencing, research-

ers are directly analysing DNA fragments 

from the microbiome. This technique has 

been particularly successful for the study 

of microbes in the human digestive sys-

tem, the gut microbiome. Even though 

we are only beginning to understand, how 

the gut microbiome interacts with its 

host, its impact on numerous host phys-

iological processes underlying health and 

disease is clearly emerging. Gut microbes 

for instance regulate our immune system 

and influence how we respond to diet and 

medication.

Due to its fundamental and complex in-

fluences on disease, there is increas-

ing interest in exploring the diagnostic 

and therapeutic potential of the micro-

biome. In clinical studies researchers 

have recently shown that the microbi-

ome can be modulated to cure recurrent  

Clostridium	difficile infections or improve 

the outcome of cancer therapies using 

fecal microbiota transplants. However, 

as researchers are beginning to trans-

late findings from microbiome studies 

into biomedical applications, the need for 

robust and rigorous biostatistics meth-

odology is growing, as data analysis is 

complicated by the fact that microbiome 

composition and function is shaped by 

many host and environmental factors, 

which increases the danger of confound-

ing in clinical microbiome studies.

Metagenomic sequencing of DNA ex-

tracted directly from microbial commu-

nities does not only enable researchers 

to address the question of ’who’s there?‘ 

(that is to determine the taxonomic com-

munity composition), but also investigate 

what these microorganisms are doing, 

as far as this is possible by studying 

the gene functions present in metage-

nomic data. The enormous diversity of 

microbial enzymes and the secondary 

metabolites they produce have been a  
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treasure trove for natural product chem-

ists. Their study has led to the discovery 

of countless medically and biotechnolo-

gically relevant compounds over the last 

decades. Despite this ongoing success 

story, the vast majority of enzymes from 

microbial communities have never been 

characterized and still constitute a large-

ly untapped source of new molecules to 

address current and future challenges in 

medicine - such as the antibiotic crisis –

and biotechnology, e.g. for the biological 

degradation of waste and pollutants.

Given the complexity of microbial com-

munities, machine learning methods are 

ideally suited to recognize patterns in 

the data. These learning algorithms can 

be trained on a subset of data that is well 

characterized by experiments (also re-

ferred to as labeled data), the resulting 

models can be used to make predictions 

on the, typically much larger amount of, 

data that is not well understood. Prior to 

training, the labeled data is usually first 

subdivided into one part for model fit-

ting and one part for the evaluation of the 

predictions the model makes. This way, 

it is possible to get an idea of its accura-

cy, e.g. to estimate the sensitivity (also 

called true-positive rate) and specifici-

ty (inversely related to the false positive 

rate) in diagnostic applications.

In the following, we will present two 

machine learning applications for the 

discovery of microbial biomarkers and  

secondary metabolites.

SIAMCAT

Multiple studies have shown that the 

microbiome plays a critical role in many 

host physiological processes. For many 

common human diseases, changes in mi-

crobiome composition have been linked 

with disease initiation or progression. 

These changes can be a basis for devel-

oping biomarkers, even in cases when the 

causal relationship between microbiome 

alterations and disease status remains  

to be elucidated. 

Colorectal cancer is an exemplary dis-

ease in which this is being explored with 

the aim of complementing the currently 

most widely used diagnostic screening 

approach, colonoscopy, with additional 

non-invasive options. The key question 

here is whether biomarkers with specific-

ity and sensitivity suitable for diagnostic 

applications can be extracted from the 

fecal metagenomes of colorectal cancer 

patients in comparison to tumor-free in-

dividuals as a control group.

For biomarker identification, machine 

learning approaches hold a distinct ad-

vantage over statistical tests, since ma-

chine learning models can make predic-

tions on new data, such as microbiome 

profiles of new patients. This allows one 

FIGURE 1: Machine learning models 

for classification of three exemplary  

di seases from metagenomic data 

trained and evaluated using SIAMCAT. 

Left and middle panels show an eval-

uation of their prediction accuracy, 

right panel the abundance of a micro-

biome biomarker from these models in 

patients (colored according to disease) 

and (healthy) control individuals (gray).

to estimate how sensitive and specific 

these predictions will likely be when used 

in a diagnostic setting.

Despite the promises for clinical appli-

cation, extensively validated machine  

learning workflows for microbiome data 

analysis are still missing. To close this 

gap, we developed a R package called  

SIAMCAT [1, 2]. This toolbox includes ma-

chine learning, statistical testing, and ad-

vanced visualization approaches tailored 

to the challenges encountered in metag-

enomic data analysis.

To validate our method, we conducted a 

large-scale analysis of 50 microbiome 

disease association studies including a 

total of >10,000 samples (see Figure 1 for 

three examples from this set of studies). 

Our results show that relatively simple 

machine learning approaches (so called 

generalized linear models based on mi-

crobial species abundance) are produc-

ing accurate models of many human 

diseases using the currently available 

metagenomic data. Given their internal 

structure, these models are easily in-

terpreted to find out, which microbial 

species contribute the most to the pre-

dictions. These can subsequently be pri-

oritized for further development as clini-

cal biomarkers (Figure 1).

Lastly, SIAMCAT also allows users to con-

duct meta-analyses, in which data from 

many independent studies is jointly re-

analysed. This way, one can investigate 

how well machine learning models can 

be transferred across studies and how 

well they generalize to patient popula-

tions from a different hospital, potential-

ly with different demographics, lifestyle, 

and co-morbidities. For the example of 

colorectal cancer, we found in a recent 

machine learning meta-analysis that mi-

crobiome biomarkers and machine learn-

ing models generalise with high accuracy 

across eight different studies from three 

continents and would therefore theoret-

ically be globally applicable to non-inva-

sively detect colorectal cancer [1].

GECCO

With the ever-increasing rate at which 

microbial genomes and metagenomes 

are sequenced, there are tremendous 

opportunities to mine these data for mi-

crobial enzymes producing secondary 

metabolites with interesting functions 

in microbe-microbe and microbe-host 

interactions.

The fact that many of these enzymes 

colocalize in genomes in so called bio-

synthetic gene clusters (BGCs) can be 

taken advantage of by machine learning 

approaches. The key idea here is to learn 

which encoded protein domains are char-

acteristic of BGCs and apply the resulting 

model to scan genomic sequences for a 
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      CONCLUSION & OUTLOOK

These two examples highlight the po-

tential of machine learning for gaining 

a better understanding of the complex 

functions of the microbiome, e.g. for 

studying how species interact with 

each other or with the host. The vol-

ume of high-throughput data on mi-

crobial communities has been quick-

ly growing, so that the experimental 

chracterization of newly discovered 

organisms and genes has not been able 

to keep pace. As simultaneously data 

complexity has increased, now ranging 

from genes to RNA transcripts, metab-

olites and images of microbes in host 

tissues, the relevance of AI in microbi-

ome research will inevitably grow fur-

ther in the near future to fuel biological 

discoveries.
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FIGURE 2: GECCO is a machine learning 

based method for the identification of 

biosynthetic gene clusters (BGCs) in 

(meta-)genomic sequences. Left pan-

el shows the sequences segmentation 

approach, right panel an evaluation 

of its accuracy (in comparison to two 

similar methods called ClusterFinder, 

which is based on HMMs, and DeepBGC, 

which is based on Deep Learning).
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local enrichment of such domains. This 

computational problem is also referred 

to as sequence segmentation and is 

commonly encountered in many other 

domains of computational research, for 

instance in natural language processing. 

To solve it, AI researchers have developed 

many machine learning algorithms, which 

have continuously improved the accuracy 

of sequence segmentation - as many of 

us have experienced for instance when 

using Google Translate. However, in com-

putational biology, a rather traditional 

algorithm called Hidden Markov models 

(HMMs) is still most commonly used and 

until recently computational tools for 

BGC mining were based solely on HMMs. 

While these have led to the discovery of 

new BGCs, experimental validation of 

their predictions  is made difficult by the 

large proportion of false-positives. 

To address this shortcoming, we devel-

oped a high-precision tool for BGC iden-

tification, which we called GECCO [3]. It 

employs a modern, discriminative se-

quence segmentation approach called 

Conditional Random Fields, which has 

been demonstrated to outperform HMMs 

in many applications. Additionally, we as-

sembled a large database of experimen-

tally characterized BGCs for training and 

evaluation of this method in comparison 

to previously developed BGC identifica-

tion tools (see Figure 2).

Our evaluations showed that all machine 

learning based tools for BGC prediction 

performed substantially better after 

training on a more comprehensive data 

set. Yet, the predictions by GECCO were 

a lot more accurate than those made 

by the other tools, including by a very 

recently published approach based on 

Deep Learning (see Figure 2, right panel). 

In particular the fraction of false positive 

BGC predictions could be substantially 

reduced by GECCO, which greatly facili-

tates currently ongoing follow-up exper-

iments aiming to characterize the chem-

ical properties and biological functions 

of the encoded secondary metabolites. 

Finally, our evaluations also showed that 

GECCO is capable of detecting BGCs with 

novel gene and domain arrangements 

(not represented in the training data), 

which makes it a great tool to explore 

the uncharted biosynthetic potential of 

microbial communities including those 

inhabiting the human body.
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Mass spectrometry-based proteomics has become the standard for high throughput 

identification of proteins in complex samples. The commonly used approach for the 

identification relies on protein sequences, which are forwarded to identification al-

gorithms. Usually only canonical sequences of the proteins are used, even if variants 

are annotated. The common algorithms can only identify sequences though, which 

they know of. Hence, spectra deriving from proteins containing variants cannot be 

identified. DeProVIDEO will facilitate the identification of variants, using all annotat-

ed variants and implement methods to deal with statistical problems arising from the 

application of big sequence databases.

The commonly applied approach to anal-

yse proteins in mass spectrometry (MS)-

based proteomics is by digesting the 

proteins in a sample into smaller amino 

acid sequences (peptides) and measuring 

these, via a liquid chromatography, on the 

mass spectrometer. The resulting spec-

tra are in a further step matched to pro-

tein sequences for the identification of 

the original peptides in the sample. This 

step is performed by so called ’peptide 

search engines‘ [1, 2]. Most of the search 

engines depend on protein database ex-

ports in the FASTA format as an input and 

only peptides, which occur in the given 

database, can be matched against the 

spectra. Usually, though, the applied pro-

tein sequences contain only the canon-

ical forms, sometimes additionally few 

isoforms. Any known variants, arising e.g. 

from mutations or being known to occur 

in or cause certain diseases, are not in-

cluded and thus any peptide carrying a 

variant cannot be identified.

In the project DeProVIDEO, two problems 

are addressed: first, the variants need 

to be added to the peptide sequences in 

a way the search engines can make use 

of them. Second, the largely increased 

search space leads to problems in the es-

timation of false positives using the com-

monly used target decoy approach. This 

will be addressed by utilizing a spectrum 

centric approach and an improved spec-

trum identification method using deep 

learning.

ADDING VARIANTS TO THE DATABASES

Currently, if variants are analyzed in  

MS-based proteomics, there are two 

methods applied: the first method de-

pends on sequencing data, be it tran-

scriptomic or genomic data, to create a 

sample specific protein database con-

taining the expected mutated sequences. 

This approach, though, would still miss all 

variants which are not sequenced by the 

applied complementary omics. The sec-

ond approach is to create a protein data-

base with only selected variants ’by hand‘.

But the most often used protein data-

base for proteomics, UniProt KB [3], also 

holds the annotations for known amino 

acid variants, even though an export into 

a format used by search engines, e.g. the 

most commonly used FASTA format, is 

not possible yet. To allow the identifica-

tion of mutated peptides by MS-based 

proteomics, we are handing all possible 

combinations of varied peptides for the 

proteins to the search engine. By doing 

this, the number of peptides increases 

exponentially with the number of possi-

ble variants per peptide. If e.g. for a pep-

tide, there is only one annotated variant, 

it only doubles this peptide. However, for 

two varied residues, at least four com-

binations must be considered, for three 

varied residues eight and so forth. In to-

tal, for the protein with the most variant 

annotation (P53), the number of possible 

peptides is higher than 10200. This obvi-

ously cannot be exported into a FASTA 

file, as would be the normal process for a 

spectrum analysis by a search engine.

Instead, in an ongoing project, we are us-

ing a graph structure to encode the vari-

ants on the peptide sequences. This graph 

can then be loaded into a server’s memory 

and any peptides of interest can quickly be 

queried per spectrum. To query the regu-

lar peptides, which contain no variant in-

formation, we use a database we recently 

published called ‘MaCPepDB – mass cen-

tric peptide database’ [4]. This database 

contains all regular peptides of the Uni-

Prot’s proteins and is specifically tuned to 

allow querying for masses and also mod-

ifications, which are another important 

setting for spectrum identifications.

In the future, we will combine these two 

approaches, using the MaCPepDB for 

peptides, which are feasible to store on 

current cluster database setups, and the 

graph approach to store proteins, which 

contain too many variants and would lead 

to combinatorial explosions. With both 

approaches combined, we are able to 

quickly get all peptides of interest – with 

and without variants – for the spectrum 

identification.

SPECTRUM-WISE FDR ESTIMATION

After adding all variant peptides for each 

spectrum, the estimation of the false 

discovery rate (FDR) using the common-
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ly applied target decoy approach (TDA) 

will result in an overestimation of false 

positives. To handle this, we will imple-

ment an approach in DeProVIDEO, which 

will not use a global FDR estimation, but 

a spectrum-wise approach. For this, an 

abundance of peptides fitting to the re-

spective spectra is required, which is 

given by all the variants. If still more pep-

tides are needed, so called decoy pep-

tides (sequences, which do not exist in 

the original database and stand for false 

positive identifications) are generated 

matching the mass of the spectrum.

DEEP LEARNING FOR IMPROVED 

SPECTRUM MATCHES

Almost any database dependent peptide 

search engine exploits for the identifica-

tion of spectra the fact, that it is relative-

ly straightforward to create a theoretical 

tandem mass spectrum of a peptide. 

These spectra are then matched to the 

actual measured spectra and similarity 

scores as well as statistical metrics for 

the quality of the match can be calculat-

ed. These theoretical spectra lack the in-

formation of intensities, though, and only 

predict where the actual mass peaks are 

expected.

To calculate better metrics for the match, 

deep learning methods for the genera-

tion of theoretical spectra will be applied. 

The recently published software Prosit 

[5] is able to perform exactly this: giv-

en a peptide sequence and some mass 

spectrometer specific parameters, a 

spectrum including peak intensities will 

be returned. Theoretical spectra gener-

ated in this way will be used for the cal-

culation and scoring of peptide spectrum 

matches to improve the match quality. 

With this approach combined with the 

spectrum-wise FDR estimation, we hope 

to gain good quality matches of peptides 

with and without variant information.

By reanalyzing MS experiments from the 

PRIDE repository [6] with the new vari-

ants containing databases, we are able to 

generate a more accurate training set to 

retrain and improve existing deep learning 

approaches like Prosit or develop an en-

tirely new approach, taking further mass 

spectrometric information into account.

Despite the described improvements 

to the spectra identification, we are ex-

pecting some spectra to be still uniden-

tifiable by the searches that depend on 

the databases. These can either be due 

to proteins, which are not sequenced yet 

(especially for non-human data), but also 

for peptides carrying variants, which are 

not yet annotated in UniProt KB. These 

unidentifiable spectra will then be further 

analyzed with various state-of-the-art de 

novo approaches, which try to find the 

original peptide sequence of a spectrum 

without the application of sequence da-

tabases and theoretical spectra.

Moreover, the identified data that we are 

going to collect by reanalyzing PRIDE 

datasets may help to create a new deep 

learning based de novo approach to in-

crease the number of successful identifi-

cations of former unidentifiable spectra.
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    CONCLUSION & OUTLOOK

With the described improvements of the 

database dependant spectrum identi-

fications using variant information, 

including the spectrum-wise FDR esti-

mation and a deep learning supported 

spectrum matching as well as de novo 

identification, we will be able to iden-

tify significantly more peptides carry-

ing variants, even without sequencing 

of the analysed samples. This will not 

only allow a highly improved coverage 

of identifiable spectra of a given mass 

spectrometry experiment, but will also 

increase the knowledge of the actu-

al occurrence of variants in any sam-

ples. Finally, we are going to include 

these novel approaches into workflows 

and other services of the service cen-

ter ‘Bioinformatics for Proteomics’  

(BioInfra.Prot) [2] of de.NBI.
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FIGURE 1: Overview of the workflow and interacting parts of DeProVIDEO.
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LC-MS/MS-based proteomics is a valuable tool for the comprehensive analysis of medical and 

biotechnological samples, slowly entering process moni toring and routine diagnostics. There-

fore, fast and reliable bioinformatic protein identification is crucial. The current bottleneck 

for the bioinformatic analysis time is the validation of the peptide-spectrum-matches (PSMs), 

carried out by false-discovery estimation (FDR) since it requires the finished LC-MS/MS mea-

surement. To overcome this limitation, we developed and tested classification algorithms en-

abling the streaming PSMs validation. A convolutional neuronal network obtained the highest 

accuracy with values above 0.95 compared to the original FDR estimation. The new classification 

algorithm provides a faster PSM validation and a big step towards near-real-time processing of 

LC-MS/MS data.

DeePSIVal:  DEEP LEARNING PEPTIDE SPECTRUM IDENTIFICATION VALIDATOR Deep Learning approaches for  peptide-spectrum-match validation 
The development of high-throughput 

methods such as next-generation se-

quencing for genomics or liquid chro-

matography coupled with tandem mass 

spectrometry   (LC-MS/MS) for proteom-

ics revolutionized research in life science 

by providing comprehensive datasets 

for research in medicine, pharmacology, 

ecology, and biotechnology. In partic-

ular, proteomics enables identifying a 

multitude of diagnostic and prognostic 

biomarkers that are actually expressed 

under the given conditions. Metapro-

teomics applies proteomics methods to 

complex multi-species systems such as 

the human gut microbiome or microbial 

communities in the environment. Moving 

proteomics and metaproteomics towards 

routine analysis requires the fast and re-

liable identification and validation of the 

obtained protein matches [1]. To speed 

up the analysis, improvements to the lab-

oratory workflow and data analysis are 

made continuously [2, 3]. Here, we pres-

ent one such improvement to data anal-

ysis: peptide spectrum match validation 

using deep learning.

PEPTIDE SPECTRUM MATCHES 

AND VALIDATION

LC-MS/MS-based shotgun (meta)pro-

teomics targets the identification and 

quantification of all proteins within a 

sample. During the sample preparation, 

proteins are digested enzymatically into 

shorter peptides, which can be measured 

by the mass spectrometer. This means 

that mass spectra correspond to the 

shorter peptides, which later have to be 

mapped back to proteins. Protein data-

base search engines compare the exper-

imental spectra against theoretical pep-

tide spectra derived from comprehensive 

protein sequence databases, revealing 

the best peptide-spectrum match (PSM) 

for a given spectrum. The PSM quality is 

typically expressed as a score represent-

ing the similarity of the theoretical and 

the experimental spectrum. Since simi-

larity scores are continuous, a decision 

has to be made at which score threshold 

PSMs are accepted as true. The common-

ly used target-decoy-strategy address-

es this problem by doing an additional 

search against a modified version of the 

original protein sequence database that 

is assumed to be false, resulting in de-

coy PSMs and their scores. The scores 

of these decoy PSMs can then be used to 

estimate a false discovery rate (FDR) for 

the search and adjust the score thresh-

old accordingly, typically to FDR=0.01. 

However, the target-decoy approach 

suffers from several problems, including 

the doubling of search times – the most 

computing-intensive step of proteomics 

data analysis – and a lowered sensitivity 

for true positives while searching against 

large sequence and decoy databases.

PSM CLASSIFICATION USING MACHINE  

LEARNING OR DEEP LEARNING

Classification problems such as the PSM 

validation suggest the use of machine 

learning or deep learning approaches.

Percolator is a machine learning algorithm 

that uses a PSM feature presentation to 

maximize the number of identified pep-

tides for a collection of candidate PSMs 

at a target false discovery rate FDR [4]. 

The algorithm trains a support vector ma-

chine for a fixed number of iterations with 

decoy peptides as false examples and 

high-scoring matches from the collection 

as positive examples. This approach uses 

PSM features, requires a target-decoy 

search to be performed, and needs to be 

applied to each search individually and 

can thus be understood as an improve-

ment of the target-decoy approach. In 

contrast, Nokoi was a machine learning 

approach using logistic regression and 

PSM features to train a general model that 

can theoretically be applied to any PSM, 

replacing the target-decoy approach en-

tirely [5]. The performance of this tool is 

restricted, working well for simple sam-

ples but failing in more general cases.

REAL TIME  D

ATA
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Deep learning offers a more complex al-

ternative to classification problems than 

machine learning. The most ambitious 

use of deep learning in proteomics is 

DeepNovo, a deep learning approach to 

de novo peptide sequencing introduced 

by Tran, Ngoc Hieu et al. [6]. DeepNo-

vo utilizes convolutional neural network 

(CNN) and recurrent neural network  

(RNN) to learns the features of tandem 

mass spectra, fragment ions, and pro-

duces peptide sequences. The combina-

tions of these deep learning structures 

and local dynamic programming allow 

the identification of MS/MS spectra with 

known peptides and the discovery of nov-

el peptide sequences. While this system 

works well for the intended use-case of 

de novo sequencing, it is doubtful that 

it can improve upon current protein da-

tabase search engines and subsequent 

PSM validation, as the number of identi-

fied peptides will be lower. 

In our work, we applied the lessons from 

these tools and developed a deep learning 

approach to PSM validation: DeepSIVaL.

DeepSIVaL CONCEPT

DeepSIVaL uses the mass spectrum and 

the peptide sequence of the PSM as input 

data. We adopted and modified the Deep-

Novo input processing for spectra, which 

first transforms the mass spectrum into 

a binned representation whereby 0.1 Da is 

the value represented by one bin. It then 

calculates the m/z value of possible frag-

ment ions for the next amino acid candi-

date and extracts 10 bins in a window of 

1 Da around the fragment ion mass from 

the experimental spectrum. The windows 

are combined with the positional amino 

acid information into a matrix of shape 

(possible Fragment-ions)*(Max sequence 

length)*(Spectrum Window) (12*30*10). 

This approach can also be utilized for the 

already identified sequences. Whereby 

the fragment ions for the entire sequence 

are calculated, and only the appropriate 

fragment ion windows are extracted from 

the experimental spectrum.

For the classification of PSMs a convolu-

tional neural network is utilized. The neu-

ral network is organized with three con-

volutional layers with batch normalization 

and rectified linear unit (ReLU) activation 

followed by a fully connected classifier. 

The first convolutional layer is organized 

as 128 filters with 3*6 kernel, the second 

layer has 64 filters with a 2*5 kernel, and 

the third layer has 32 filters with a 2*2 ker-

nel. The classifier combines a fully con-

nected layer of 32 neurons with 2 softmax 

output units that produce a probability 

distribution over the identity classes.

A notable difference that machine learn-

ing and deep learning approaches offer 

compared to the target-decoy approach 

is, that the validation is done on the lev-

el of an individual spectrum, requiring no 

information of other PSMs, thus enabling 

parallelization and streaming. 

RESULTS

The accuracy indicates the number of 

data points (PSMs) that are classified 

correctly, where our evaluation uses the 

classification from the target-decoy ap-

proach as baseline for PSM validation. 

In an earlier attempt, we implemented a 

machine learning tool to validate PSMs, 

building on the tool Nokoi [5]. Among 

other things, we explored different mod-

els such as logistic regression and differ-

ent types of species-based training data 

sets. A problem emerged, where models 

trained using the training data set for 

one species suffered a drastic drop in 

prediction accuracy when applied to the 

test data of another species, with the 

best model showing a drop from ~96 % 

to ~80 %. While this issue is still present 

using DeepSIVaL, this effect is drastically  

reduced as shown in Table 1. In case of 

the protein mix, the number of PSMs used 

for training was much lower than for the  

E. coli  or Hela data sets.
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    CONCLUSION & OUTLOOK

We demonstrate that PSM valida-

tion using convolutional neuronal 

networks is feasible. DeePSIVal 

only requires the mass spectrum 

and the peptide sequence of a sin-

gle PSM as input and enables a fast 

PSM validation that represents a 

big step towards near-real-time 

processing of LC-MS/MS data.

TABLE 1: Accuracy for three models trained with 

three datasets, tested against three datasets.

Accuracy Training vs Test E. coli Hela Protein Mix

Ecoli 0.973 0.960 0.953

Hela 0.958 0.975 0.956

Proteinmix 0.939 0.939 0.984

FIGURE 2: A single shotgun proteomics ex-

periment of just forty minutes can result in 

tens of thousands of potential peptide spec-

tra of greatly varying intensity and quality. 

Automation of data analysis is unavoidable 

and only very few high intensity peptides that 

are visible in a chromatogram as shown in 

this figure are easily identified and validat-

ed. The vast majority of spectra that are re-

corded belong to lower abundance peptides 

that require sophisticated protein database 

search engines and thorough validation for 

automatic analysis.

DEEPSIVAL: DEEP LEARNING PEPTIDE SPECTRUM IDENTIFICATION VALIDATOR – DEEP LEARNING APPROACHES FOR PEPTIDE-SPECTRUM-MATCH VALIDATION
 BIOLOGICAL DATA MEETS AI – OMICS, BIG DATA AND MACHINE LEARNING AS TOOLS TO ACCELER ATE UNDERSTANDING OF BIOLOGICAL MECHANISMS

FIGURE 1: The DeePSIV-

al workflow, showing the 

model creation by training 

and the prediction work-

flow for use in a larger 

pipeline. To the left the 

basic principle of the CNN 

model is illustrated.
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are covered in a review by the authors  

of this article [2].

Evolutionary conserved structures ap-

pear not only in small RNA genes but also 

as part of larger RNAs, including mRNAs, 

as motives with regulatory function. The 

selection pressures maintaining such 

structures are often associated with RNA 

binding proteins or small regulatory RNAs 

like miRNAs. It is an important problem 

in RNA biology, therefore, to identify  

evolutionary conserved RNA structures. 

RNAz [4] is one of the oldest and most 

widely tools for this purpose. It extracts 

and integrates information from se-

quence alignments and computa-

tionally predicted structures. 

To this end, a small number 

of rationally designed 

composite features are 

integrated in a well-

trained decision 

model.  Main com-

ponents are an 

entropy measure 

of sequence  

variation, z-scores that quantify the 

folding energy of an RNA relative to the  

distribution of random RNAs with the 

same sequence composition, and the 

structure conservation index (SCI). The 

SCI compares folding energies relative to 

the folding energy of a common consen-

sus structure, an approach that is more 

robust than a direct evaluation of the 

structure.

The reliable identification of ncRNA loci 

in whole genome screens still remains a 

highly challenging task. However, RNAz 

has successfully been applied to discov-

er functional elements across Drosoph-

ila genomes, long non-coding RNAs in 

mouse embryonic stem cells as well as 

conserved RNA structures in the human 

and mouse genome.

MACHINE LEARNING (ML) AND HO-

MOLOGY SEARCH

There are two fundamentally different 

methods to identify ncRNAs in genom-

ic data: (1) Homology search utilizes 

sequence similarity to a specific que-

ry sequence. Since structure dictates 

function of many RNAs, their spatial 

structures are often better conserved 

than their sequences. Thus, homology 

search methods for ncRNAs usually also 

take structural similarity into account. 

Tools such as infernal indeed achieve 

substantial improvements compared to 

sequence-only methods such as Blast. 

However, by construction, only homologs 

of known ncRNAs can be found. (2) Some 

ncRNAs, including tRNAs, microRNAs, 

and snoRNAs, belong to larger families 

that share both function and biogene-

sis and are consequently recognizable 

by a set of characteristic sequence and 

structure features. The identification of 

members of a RNA class is a classifica-

tion problem that is typically solved by 

ML. Such classifiers have been imple-

mented most notably for tRNAs, miRNAs, 

and snoRNAs. All these classifiers evalu-

ate candidate sequences that previously 

have been extracted from their genomic 

context using simple rules.

A closely related, but apparently much 

more difficult ML problem is to ask 

whether or not a given se-

quence of fixed length 

contains a ncRNA of 

a given class.  

An efficient 

STRUCTURED NON-CODING RNAS

Non-coding RNAs (ncRNAs) have turned 

out to be key components of a cell’s mo-

lecular mechanism. Some of these, in-

cluding tRNAs and rRNAs, are among 

the evolutionary oldest molecules. Other 

classes are key regulators that evolved 

later. Examples are the microRNAs of 

plants and animals and the many inde-

pendent groups of small RNAs in procary-

otes. A common feature of these RNAs 

is that their function is closely 

linked to their spatial  

structure. The 3D structure of RNAs is 

dominated by secondary structures, i.e., 

the specific base pairs between nucle-

otides. Efficient dynamic programming 

algorithms are available to compute 

ground-state structures as well as ther-

modynamic parameters and quantities 

such as the equilibrium probabilities of 

base pairs. The ViennaRNA package pro-

vides a comprehensive software suite im-

plementing the core algorithms, recent  

advances 

Non-coding RNAs have turned out to be wide-spread and key regulatory elements 

in cells. Machine learning (ML) approaches are used in several stages to unravel the 

function of non-coding RNAs. Thus, they are applied to detect non-coding RNAs in 

various forms of homology-bases searches. Furthermore, ML-approaches are used 

to detect targets for non- coding RNAs, RNA-protein interactions and associations 

between ncRNAs and their host genes. This review will exemplify some of the appli-

cation of ML in RNA-based research.
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BIOLOGICAL DATA MEETS AI – OMICS, BIG DATA AND MACHINE LEARNING AS 

TOOLS TO ACCELER ATE UNDERSTANDING OF BIOLOGICAL MECHANISMS
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solution to this version of the ncRNA 

classification problem would provide an 

alternative to homology search for large 

evolutionary distance, where sequence 

similarity comes close to or even falls  

below the detection limit. A first pilot 

study [1] has been encouraging, but also 

identifies this as a difficult problem for 

future research.

CLASSIFICATION OF ncRNAS FROM 

READ PROFILE

An alternative to identify ncRNAs in ge-

nomic context is the identification from 

transcriptomics data, inspired by the ob-

servation that microRNAs exhibit a char-

acteristic read profile with two blocks, 

corresponding to the locations of the 

microRNA and the complementary mi-

croRNA*. The tool ’BlockClust‘ [7] uses 

’blockbuster‘ to split read profiles into 

blocks representing certain read pat-

terns. This read patterns are then encod-

ed using a graph representation, which 

allows for a better representation of dif-

ferent combinations of properties. These 

are then processed using a graph-kernel 

technique, obtaining new features that 

represent pairs, triplets and higher order 

combinations of the original features, 

while still being able to be classified us-

ing efficient linear models such as linear 

support vector machines. In this way, the 

resulting classifier is in fact non-linear. 

ASSOCIATION OF HOST GENE FUNC-

TION FOR LONG NON-CODING RNAS

A wide variety of molecular and biologi-

cal functions have been reported for long 

non-coding RNAs (lncRNAs). Specific ln-

cRNAs regulate chromosome architec-

ture and chromatin remodeling, modulate 

inter- and intrachromosomal interactions 

and recruit or prevent the recruitment of 

chromatin modifiers. Other lncRNAs reg-

ulate transcription by forming R-loops 

thus recruiting transcription factors and 

interfere with the Pol II machinery to in-

hibit transcription. There is, however, 

no clear-cut correspondence between 

sequence or secondary structure fea-

ture and lncRNA function. In contrast to 

protein-coding genes, where function is 

closely tied to protein families and spe-

cific sequence motifs, sequence simi-

larity appears to be a poor predictor of 

functional similarity in lncRNAs. In stark 

contrast to small structured RNAs, it has 

remained impossible to predict the bio-

logical function or molecular mechanism 

of a lncRNA from its sequence alone. Machine learning is a step forward towards the prediction of the biological function or molecular  mechanism of ncRNA.
Unsupervised clustering of normalized 

k-mer abundances revealed an associa-

tion of k-mer profiles with lncRNA func-

tion, in particular with protein binding 

properties and sub-cellular localization. 

Still, it remains an open question whether 

there are distinct, well-separated class-

es of lncRNAs or whether the universe 

of lncRNAs is organized as a continuum 

of functions and associated molecular 

features. In contrast to their highly con-

served and heavily structured payload, 

the non-coding host genes of both miR-

NAs and snoRNAs feature poorly con-

served sequences. So far, no connec-

tions between the function of the host 

genes and the function of their payloads 

have been reported, however.

In [6], we investigated whether there is 

evidence for an association of host gene 

function or mechanisms with the type of 

payload. To assess this hypothesis, we 

tested whether the miRNA host genes 

(MIRHGs), snoRNA host genes (SNHGs), 

and other lncRNA genes can be distin-

guished based on sequence and/or struc-

ture features unrelated to their payload. A 

positive answer would imply a functional 

and mechanistic correlation between 

host genes and their payload. We ob-

tained a negative answer, however, indi-

cating that the functions of host genes 

are not strongly constrained by the prior, 

primary function of the payload. While ML 

classifiers readily distinguish the three 

classes if presented with the payload se-

quences, they become virtually indistin-

guishable as soon as only sequence and 

structure of parts of the host gene distal 

from the snoRNAs or miRNA payload are 

used for classification. The functions of 

MIRHGs and SNHGs thus are largely in-

dependent of the functions of their pay-

loads. Furthermore, there is no evidence 

that the MIRHGs and SNHGs form coher-

ent classes of lncRNAs distinguished by 

features other than their payloads. The 

study [6] shows that ML approaches can 

also be employed to provide evidence for 

the independence of features by observ-

ing that for certain problems efficient 

classifiers are unattainable.

MACHINE LEARNING FOR (nc)RNA 

TARGET PREDICTION

A fundamentally important feature of 

ncRNAs and RNAs in general is their vast 

potential for interaction, intramolecular, 

as well as intermolecular with all sorts 

of other (nc)RNAs and proteins. This 

plethora of possible interactions makes 

them key regulators of many biological 

processes. So far, however, there exists 

no universal approach to unravel the 

systemic effects of such interactions. 

For that reason, it is important to get a 

genome-wide overview of likely interac-

tion partners for a ncRNA. For RNA-RNA 

interactions, there are several tools for 

predicting a joint structure between two 

RNAs, with IntaRNA being one of the 

most popular ones. For the prediction of 

microRNA targets, established tools did 

not rely on the thermodynamic predic-

tion of RNA-RNA interactions alone as 

the structure of an RNA is influenced by 

RNA-protein interactions. Instead, sever-

al additional features are combined into 

a score, either by a hand-crafted scoring 

approach, or via ML as in e.g., mirSVR or 

Miranda2. 

For RNA-protein interactions, a purely 

sequence-based approach is impossi-

ble due to the complexity of the inter-

action. Here, the method of choice is to 

predict possible binding sites by learn-

ing sequence-structure properties from 

known interactions. This type of data 

is available on a genome-wide scale via 

specific sequencing protocols (such as 

CLIP-seq) that enrich RNA bound by a 

specific RNA-binding protein (RBP). As 

this data inherently is cell type specif-

ic, one needs prediction tools that de-

termine likely bound RNAs that are not 

expressed in the cell-type used for the 

CLIP-seq experiments. Here, Graph-

Prot [5] used a graph-kernel approach 

to encode both sequence and structure  

properties of RBP binding sites (see 

Figure 1). MechRNA [3], constitutes a 

pipeline which integrates RNA-RNA  

interaction prediction with GraphProt 

to identifying possible mechanisms of  

lncRNA regulation.
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FIGURE 1: Graph-kernel-based encoding of 

sequence and structure properties for a RBP 

binding-site. Features correspond to pairs 

of subgraphs (determined by radius R) within 

a certain distance. Figure taken from [5].
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WHY DO TRANSCRIPTOMES NEED AI 

FOR AN EXPLANATION?

Thanks to the sequencing technology 

that enabled a fast and reliable mea-

surement of the active state of the DNA, 

namely the RNA. Nowadays, transcrip-

tomics analyses are of major interest for 

high-throughput investigations because 

of the ease of use and broad variety of ap-

plications available. Current applications 

like single-cell, single-nuclei, and spatial 

RNA-Sequencing (RNA-Seq) are adding 

great value and unprecedented molecu-

lar resolution to standard bulk RNA-Seq  

(Figure 1). The increasing complexity of 

experimental applications also resulted 

in more advanced computational data 

analysis procedures, in which Artifi-

cial Intelligence (AI) algorithms have an  

essential role. The application areas of 

ML supporting the interpretation and ex-

planation of data include the general ar-

eas of data clustering, classification, and 

annotation, but also more specific ones, 

such as oversampling, trajectory pre-

diction, or Deep fusion models to learn 

specific cell types. Here, we give a brief 

excerpt about current AI applications 

utilized in de.NBI for the transcriptomic 

domain (as part of the RBC – de.STAIR 

partner project) that facilitate the inter-

pretation of RNA-Seq data.

INDEPENDENT BULK RNA-SEQ DATA 

ANALYSIS VIA AI

The advancements in RNA-Seq technolo-

gy made it more feasible for researchers 

to sequence larger cohorts; thus it is not 

uncommon anymore to have several hun-

dred samples per experimental group. 

Since RNA-Seq data is already high-di-

mensional by nature, featuring more 

than 200.000 coding and non-coding 

transcripts respectively in humans, the 

pairing with large amounts of samples 

highly attracts AI-based approaches for 

its downstream analysis.

Dimensionality reduction approaches, 

such as Principal Component Analysis 

(PCA), t-distributed Stochastic Neighbor 

Embedding (t-SNE), or Uniform Manifold 

Approximation and Projection (UMAP), 

are used for preliminary clustering of the 

data. The unsupervised abstraction of 

high-dimensional data into the two-di-

mensional space with retention of the 

variability contained within the data on 

the one hand enables straightforward de-

tection of batch effects, and on the other 

hand yields insight in the composition of 

the cohort, with possible indications to-

wards subpopulations.

Feature selection approaches using algo-

rithms, such as Elastic Net Regression, 

Random Forest, or Gradient-Boosting 

methods, can be used to great effect in 

tandem with conventional Differential 

Expression approaches [1]. As an exam-

ple, conservative fold change thresholds 

can be used to first trim a larger gene 

(=feature) list, and subsequently ML-

based algorithms with their ability to 

identify inter-variable relationships nar-

row down this list to a handful of genes of 

interest [2].

SINGLE-CELL TRANSCRIPTOMICS 

FOR CELL SUBPOPULATION  

CHARACTERIZATION

The single-cell and single-nuclei RNA-

Seq technologies (scRNA-Seq) provid-

EXPLAINABLE TR ANSCRIPTOME (?) ANALYSES –  THE ROUTE OF BULK, SINGLE-CELL, AND SPATIAL TR ANSCRIPTOMICS ANALYSES TAKEN BY EXPLAINABLE AI ALGORITHMS
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EXPLAINABLE  TRANSCRIPTOME (?)  ANALYSES The route of bulk, single-cell,  and spatial transcriptomics  analyses taken by explainable  AI algorithms
RNA-sequencing as one of the most 

important and versatile high-through-

put technologies continues its suc-

cess story with novel developments 

within the area of single-cell and 

spatial transcriptomics. Likewise, 

molecular resolution and data 

interpretation complexity are in-

creasing, which is why Machine 

learning algorithms are already 

essential for fast and accurate 

analyses. Here, we discuss pos-

sibilities of specific explainabil-

ity algorithms around common 

bulk experiments, single-cell, 

as well as spatial transcriptomic 

investigations that are used to facil-

itate the overall data interpretation. 

The reader will get to know a broad 

variety of current AI applications for 

RNA-Seq data.
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ed us with an unprecedented resolution 

of molecular detail. Starting with initial 

tissue and cell preparation, cell captur-

ing and library preparation, sequencing 

and raw data processing, the single-cell 

technology ultimately helps us in visual-

ization and characterization of molecular 

profiles at a cell or nuclei level. Several 

AI-based techniques have found their 

application in visualization of the high-di-

mensional data and several other down-

stream analyses [3]. 

A popular application of AI in this area is 

to identify, quantify, and characterize cell 

populations in heterogeneous samples 

and tissues from scRNA-Seq. Intelligent 

feature selection and use of unsuper-

vised learning approaches are the driving 

force in this area of research [4]. Ad-

vanced meta-learning based tools, such 

as MARS, can automatically identify and 

annotate known and novel cell types. A 

related challenge addressed by AI in this 

domain is to distinguish between closely 

related cell populations, potentially re-

vealing functionally distinct groups with 

complex relationships. This is realized by 

investigation of cell transitions through 

temporal cell-states to observe grad-

ual transcriptional changes occurring 

in cells.  Popular tools in these domains 

are Monocle and Slingshot both of which 

leverage on several unsupervised learn-

ing and dimension reduction algorithms. 

Instead of discrete characterization of 

cells, the space of cells can be realized 

as a continuum via interesting concepts, 

such as cell-trajectory prediction utilized 

by tools like sc-Velo. These types of anal-

yses can be used to explain differentia-

tion directions and the specific velocity 

of individual cells.

We have recently developed an AI-based 

tool, namely single-cell Synthetic Over-

sampling (scSynO), that uses gene ex-

pression counts of already identified rare 

cells as an input to generate synthetic 

cells. Afterwards, the newly generated 

cells are used to identify similar (rare) 

cells of the same kind in other publicly 

available experiments.  For this reason, 

we applied the Localized Random Affine 

Oversampling (LoRAS) algorithm to gen-

erate synthetic samples from rare-cell 

populations [5]. Training an AI-based 

classifier on such data enhances its like-

lihood for detecting these rare-cell types 

from a vast distribution of cells. scSynO 

can be integrated with existing workflows 

for further downstream analysis.     

AI ALLOWS FOR SINGLE-CELL 

RESOLUTION OF SPATIAL RNA-SEQ 

DATA

The spatial RNA-Seq technology joins the 

two worlds of sequencing data analysis 

with image processing, which greatly ex-

panded the knowledge of native multicel-

lular biological systems. While the field is 

moving forward at a rapid pace, there are 

still multiple challenges, including sen-

sitivity, labor extensiveness, tissue-type 

dependence, and limited capacity to ob-

tain detailed single-cell information [6]. 

Some limitations might be circumvented 

by integrating single-cell RNA-Seq data 

but the technical limitation to achieve 

single-cell resolution might only be over-

come by computational approaches. Cur-

rent AI-based methodologies, such as 

XFuse, utilize a deep generative model to 

spatial expression data. The underlying 

model fuses low-sensitivity, low-resolu-

tion expression data with high-resolution 

histological image data to infer denoised 

full-transcriptome spatial gene expres-

sion at the same resolution as the image 

data (Figure 2).

Additional software tools, such as STUtil-

ity, can add multiple features for spatial 

analysis, image processing, and visu-

alization. Thus, aligned images can be 

stacked to create a turntable 3D model of 

the tissue, which e.g., can be used to vi-

sualize gradually shifting changes in gene 

expression or allows for an actual 3D tis-

sue reconstruction.

However, taking into consideration the 

high costs per experiment, a first step for 

a broader applicability and higher aware-

ness would encompass large collabora-

tive efforts to create comprehensive and 

publicly available cell atlases. Based upon 

these new data analysis tools and bench-

marks can be provided to set standard-

ized procedures for this new technology.

POTENTIAL USE OF AI-BASED  

EXPLAINABILITY ALGORITHMS

AI algorithms, especially ones utilizing 

Deep Learning (DL), are often described 

as ’Black Box‘ models. They are far too 

complex to simply grasp their inner 

workings and mechanisms behind the 

decision-making. Luckily, algorithms are 

being developed to shed light into these 

models and help the user to understand 

their reasoning. Methods like Grad-CAM 

and Integrated Gradients are able to 

highlight the important parts of an input 

according to the model they are used on. 

We applied this on a network, which was 

trained to distinguish between maturity 

states of differentiating cardiomyocytes 

based on fluorescence stained images. 

These algorithms can be applied on tran-

scriptomics data sets and might be able 

to extract important gene combinations 

in the future [7].

FIGURE 1: Overview of current RNA-Seq technologies that await develop-

ments for AI assistance. Images were taken from Pixabay (Acknowledge-

ments to Rubén Calvo, ElasticComputeFarm, and Devon Breen).
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FIGURE 2: Use of AI-based algorithms for 

spatial RNA-Seq data to integrate, cluster, 

and enhance the interpretation. Data was 

generated by the ESF funded iRhythmics 

project (https://irhythmics.med.uni-ros-

tock.de/).
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    CONCLUSION & OUTLOOK

Taken together, AI fosters explaining 

complex RNA regulation and is highly  

utilized in novel technologies, e.g., 

single cell and spatial transcriptom-

ics, in which the data structure and 

general amount is even more complex 

and larger in size than in traditional 

bulk sequencing. AI is an inevitable 

tool for the analysis of these data 

types.



ED MOLOREM NOBITEM SUNTUR SI CORIBUSAE SUM 

LOREM IPSUM

ED MOLOREM NOBITEM SUNTUR SI CORIBUSAE SUM 

LOREM IPSUM

BEHIND THE SCENES – AI AS AN ENABLER OF SCIENTIFIC DISCOVERY IN THE LIFE SCIENCES
The development and application of the methods of AI to decision support 

and knowledge acquisition has been increased just recently. The aim is to 

go from data to insight faster and more efficiently. These efforts are in-

dispensable, for example, to improve the evaluation of complex data sets, 

thus contributing to a better but also more complete picture of a disease 

or a certain condition.

80 | 81



ED MOLOREM NOBITEM SUNTUR SI CORIBUSAE SUM 

LOREM IPSUM

82 | 83

FROM GENOMES TO PHENOTYPES  –  HOW AI HELPS MOBILIZING AND ANALYZING BIG DATA AND PREDICTING PROPERTIES FOR THE MANY UNCULTURED BACTERIA
BEHIND THE SCENES – AI AS AN ENABLER OF SCIENTIFIC DISCOVERY IN THE LIFE SCIENCES

In bacterial research, there is a great imbalance of available informa-

tion per species. While a few species are well-studied, only sequence 

information is at best available for the vast majority of bacteria. We are 

applying AI-driven approaches to reduce this gap. The starting point 

for this approach is the database BacDive, which is the largest source 

for standardized phenotypic data on bacteria. The data basis is further 

extended with AI-assisted text mining to extract phenotypic data from 

the literature and extract genomic phenotypes. This builds the starting 

point for AI-driven analysis to predict the physiology and the appropri-

ate cultivation conditions for not yet cultured bacteria.
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FROM GENOMES 
TO PHENOTYPES  How AI helps mobilizing and analyzing big data and predic-ting properties for the many uncultured bacteria 

There is a great imbalance in microbi-

ology regarding the abundance of data 

for different species. Bacteria can be 

roughly divided into three groups, (1) a  

few well-studied model organisms, 

(2) thousands of species that can be  

cultured but are not yet examined in 

detail, and (3) presumably millions of  

organisms that are appear in sequenc-

ing datasets at best and that are neither 

cultivated nor studied. The collaborative 

project DiASPora addresses the latter 

two cases by extracting and integrating 

available information from the literature 

and drawing conclusions from well-stud-

ied organisms. This is done by applying 

artificial intelligence (AI) techniques to 

comprehensive datasets from BacDive.  

Researchers from DSMZ, ZB MED and  

TIB are sharing their expertise in this 

joint project. 

The Bacterial Diversity Metadatabase 

BacDive is the largest database for  

standardized phenotypic information. 

BacDive comprises data for over 14,000 

bacterial species and over 80,000 strains. 

The data cover over 600 different data 

fields including taxonomy, morphology,  

physiology, and cultivation conditions. 

Due to the standardized data fields  

BacDive enables systematic analysis, like 

comparisons over a wide range of bac-

terial species, as well as finding strains 

based on certain attributes. Still, the cov-

erage of the database shows gaps that 

need to be filled to allow comprehensive 

analyses over all known species.

WHERE THE DATA HIDE: USING AI TO 

SUPPORT TEXT MINING OF PUBLIS-

HED KNOWLEDGE

The process of describing organisms 

is a basic but essential component for 

studying diversity, taxonomy and evo-

lution in biological sciences [1]. Scien-

tists have amassed huge amounts of 

taxonomic literature over centuries that 

provides comprehensive phenotypic 

information for each species hidden in 

research papers. 

BacDive integrates systematically ex-

tracted data and already provides ac-

cess to standardized data for over 6500 

species descriptions of bacteria and 

archaea. So far, extracting the data and 

transforming them into standardized 

BacDive datasets needs a significant 

amount of manual work. Data in text for-

mat is mostly unstructured and the natu-

ral language used is highly variable. 

To mobilize these hidden data from pub-

lished literature, we apply a combination 

of rule-based and AI-based models for 

information extraction. We use classical 

Natural Language Processing (NLP) ap-

proaches including Part-of-Speech (POS) 

tagging for entity recognition and build 

relationships between various entities 

and other parts of sentences. So far, we 

have used a comprehensive list of key-

words from the BacDive database to build 

classifiers to identify relevant sentences. 

We are currently using a rule-based meth-

od to extract phenotypic characters from 

text using syntactic patterns. In parallel, 

we are also working towards an unsu-

pervised information extraction system 

using word embedding and deep learning 

approaches including Long Short-Term 

memory (LSTM) models.

The aim is to work towards an automated 

approach that is robust by including feed-

back cycles with domain experts to train 

the AI. In this way extracting information 

can be accelerated significantly and per-

formed with a high degree of confidence.

JUMPING TO CONCLUSIONS: USING 

AI TO INFER PHENOTYPIC INFORMA-

TION FROM GENOMES

In contrast to phenotypic data that are 

sophisticated and hard to determine, 

genome sequences are becoming in-
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FIGURE 1: The different aspects of the  

DiASPora project. Platforms represent the 

major working packages and speech bubbles 

represent the main techniques used. 

The goal is to enrich phenotypic data 

of these 10,000 strains in BacDive by an 

AI-guided approach. The following six 

phenotypic categories were best suited 

for a proof-of-concept: growth tempera-

ture, salinity, gram staining, oxygen re-

quirement, motility, spore formation. We 

trained Support Vector Machines (SVM) 

and Random Forest (RF) Classifiers on 

one-hot encoded Pfam annotations to 

predict phenotypic traits. Besides the 

great potential of this approach, it is lim-

ited by the availability and distribution of 

data. While we are improving the avail-

ability of data in the first part of the proj-

ect, uneven or biased data may be chal-

lenging. However, first results showed an 

accuracy between 78 and 97 %, depend-

ing on the trait category. These prelimi-

nary results highlight the importance of 

data quality and quantity for successful 

AI application.

CULTIVATING THE UNKNOWN: USING 

AI TO PREDICT CULTIVATION CON-

DITIONS FOR SO FAR UNCULTURED 

BACTERIA

The enhanced data basis in BacDive is 

subsequently used to predict cultiva-

tion conditions for so-far- uncultivated 

bacteria. This last part of the project 

combines datasets from the DSMZ list 

of media, the previously applied AI tech-

FIGURE 2: Schematic workflow of the DiASPora 

project. External data resources, BacDive data 

and AI methods are highlighted in dark blue, 

black and pink, respectively.

creasingly available for a large number of 

bacterial species [2], providing the op-

portunity to infer phenotypic information 

from genome sequences. Previous ap-

proaches already demonstrated the pos-

sibilities of this procedure, although they 

were limited regarding their training data. 

Traitar for example was able to predict a 

set of 67 different traits with up to 73 % 

accuracy, although it was trained on only 

234 bacterial species and the algorithm 

discarded strain specific phenotypes [3]. 

The PICA algorithm was used to build the 

PhenDB database [4] that currently holds 

39 phenotype models. The models were 

trained on up to 427 strains and have an 

accuracy between 63 % (psychrophilic) 

and 99 % (obligate intracellular). 

We extend these approaches by using 

much larger sets of manually curated 

phenotypic data from BacDive. To this 

end, we linked genome information from 

other databases to BacDive. An extensive 

data mapping approach resulted in al-

most 10,000 strains that have  sequenced 

genomes available. We performed state-

of-the-art genome annotations using 

various methods. After thoroughly re-

viewing the data, we used Pfam classes 

for training our AI models.
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niques and the predicted phenotypic 

data. In this way, we extend the efforts 

of the KOMODO approach [5] that solely 

used taxonomic relationships to predict 

media for uncultivated bacteria.

Since the KOMODO database is outdat-

ed, we decided to build a new database. 

Therefore, over 1,800 culture media had 

to be extracted from non-standardized 

documents and transferred into a ma-

chine-interpretable data format. We 

transformed the data into a relational 

database and implemented a user inter-

face for this newly created culture media 

database. The database is freely avail-

able under the name BacMedia (bacme-

dia.dsmz.de) and offers instructions to 

cultivate over 40,000 microbial strains. 

The data were enhanced using pheno-

typic information from BacDive and the 

previous studies. 

First AI models demonstrated the feasi-

bility of this approach: as an example, the 

supplementation of biotin could be pre-

dicted with an accuracy of almost 90 %. 

This approach has yet to be applied to a 

larger amount of molecular components, 

as well as tested in the laboratory. How-

ever, this approach is also limited by the 

amount of available data. For instance, 

the majority of media are complex me-

dia, meaning their exact composition can 

hardly be determined. We address this by 

integrating ecological and physiological 

data in our analyses.

The newly created culture  media database BacMedia offers instructions to cultivate over 40,000 microbial strains. 

        CONCLUSION & OUTLOOK:

        Standardized and machine- 

interpretable data ready to explore

The DiASPora project aims for enhanc-

ing biodiversity information on poorly 

studied organisms. Efforts in text min-

ing allow the extraction of published 

knowledge while AI-assisted predic-

tion of phenotypic traits extrapolate 

this knowledge. This huge increase 

in knowledge will improve our under-

standing of the poorly studied majority 

of species in bacterial research. Trans-

forming all data into a machine-inter-

pretable knowledge graph will allow 

innovative search options for the dis-

covery of hidden data relationships. All 

this data will extend the BacDive data-

base and will therefore be accessible 

by the microbial research community 

according to the FAIR principles.
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Researchers in Galaxy, a web-based and open-source platform for scientific 
data-processing, create data analysis pipelines known as workflows. They can be 
complicated to create, especially for new researchers, from thousands of acces-

sible tools in Galaxy. In order to assist them in forming workflows, a recommend-

er system is devised which suggests tools at each step of forming a workflow. 
These workflows consist of sequences of tools and their higher-order depen-

dencies are learned by a variant of a recurrent neural network. A Galaxy API is 

created to fetch recommendations from the model created by the neural network 

and they are shown using two user interface integrations in the European Galaxy 

Sever. An accuracy of 98 % is achieved when using this recommender system for 

the top-1 metric.

TOOL RECOMMENDER  SYSTEM IN GALAXY  USING DEEP LEARNING
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FIGURE 1: An example workflow consist-

ing of 5 different tools (a) is decomposed 

into multiple tool sequences (b–d). Each 

tool sequence shows higher-order de-

pendencies where a tool is dependent 

on all of its prior tools. These dependen-

cies are indicated by the dashed arrows.

FIGURE 2: Top-k (precision@k) shared 

precision for DNN, CNN, and GRU neu-

ral networks with cross-entropy loss 

function in (a), (c), and (e), respectively. 

Topk (precision@k) shared precision for 

DNN, CNN, and GRU neural networks with 

weighted cross-entropy loss function in 

(b), (d), and (f), respectively.

To ensure a reproducible data analy-

sis, many workflow systems such as 

Bcbio-nextgen, Omics Pipe, and many 

others have been developed [1, 2]. A 

workflow is a stepwise data processing 

pipeline, for example, quality control, 

preprocessing, quantification, and sta-

tistical analysis. These steps together 

transform any raw data into meaningful 

scientific outcomes. A workflow rep-

resents one unit of software which can 

be shared, saved, and reused enabling 

reproducible research. But, creating a 

meaningful workflow is a difficult task. 

An important question would be how to 

ascertain that a given workflow gen-

erates a valid output. Therefore, it be-

comes necessary to use correct tools at 

each step of creating a workflow.

Galaxy provides thousands of accessi-

ble tools. To acquire a specialized knowl-

edge of so many tools to create a work-

flow is a complicated task, especially for 

new researchers. In order to help them 

create meaningful workflows, a recom-

mender system is created which has 

several benefits.  First, it will make re-

searchers more efficient by saving their 

time wasted in creating erroneous work-

flows. Second, it will help them avoid the 

step of searching for tools separately, 

which will shorten the time spent in cre-

ating workflows. Third, it will promote 

high-quality tools that have been used 

more often in the past to the top of the 

recommendations. Finally, it can be 

extended to promote the newly added 

tools in Galaxy by showing them along-

side the recommended tools predicted 

using the neural network approach.

SEQUENTIAL LEARNING ON WORK-

FLOWS

More than 18,000 workflows have been 

collected from the European Galaxy 

Server to create the recommender sys-

tem. These workflows come from dif-

ferent scientific analyses such as RNA-

seq, variant-calling, Hi-C, assembly, 

single-cell, proteomics, and many oth-

ers. Workflows, created by researchers 

in Galaxy, are decomposed into multiple 

tool sequences (Figure 1). Tools are con-

nected one after another in these tool 

sequences and have similar nature as 

other sequential data such as text and 

speech. There are multiple studies in 

the fields of natural language process-

ing, and speech recognition that apply 

deep learning techniques on sequential 

data to obtain good accuracy in predict-

ing future items. Therefore, in our work, 

a variant of recurrent neural network 

(RNN)—gated recurrent units (GRU)—is 

used to create the tool recommender 

system in Galaxy.

RESULTS

Three different neural network archi-

tectures — dense neural network (DNN), 

convolutional neural network (CNN), 

and gated recurrent units neural net-

work (GRU) — are compared on their 

performances in recommending tools  

(Figure 2). The models, obtained af-

ter training these three architectures, 

are used to predict tools for the tool 

sequences in the test data after ev-

ery training iteration. Top-k precision 

(precision@k) is a popular metric for 

evaluating a recommender system. 

Precision@k implies how many of the k 

predicted tools are compatible. For ex-

ample, k = 2 implies that there are 2 pre-

dicted tools with the highest predicted 

scores. If only 1 of them is correct, then 

the precision@2 is 1/2 = 0.5. Precision@1 

and precision@2 metrics are used in this 

approach to evaluate the quality of the 

tool recommender system. Overall, the 

GRU neural network shows a superior 

performance compared to DNN and CNN 

by achieving 98 % top-1 precision.
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    CONCLUSION & OUTLOOK

A recommender system to suggest 

tools in Galaxy is created by learning 

on workflows coming from different 

scientific analyses using a variant of 

RNN (GRU). The tools recommended 

by the system are highly relevant as 

confirmed by their similarities with 

the tools used in Galaxy Training Net-

work [7] tutorials for multiple scien-

tific analyses. These recommended 

tools can be easily accessed using 

simple user interface interactions in 

the European Galaxy Server (Figure 3 

and 4). Together, they offer a good user 

experience for researchers to choose 

high quality tools for their data analy-

sis. The approach used to create the 

recommender system avoids storing 

any metadata of tools or workflows 

and uses only patterns of tool connec-

tions from workflows to suggest tools 

at each step of creating a workflow. 

The neural network creates the model 

to recommend tools. An API, residing 

with other Galaxy APIs, accesses this 

model and makes use of the input tool 

or a tool sequence provided by a re-

searcher to recommend tools in real 

time. It is expected that this system 

is extremely useful for researchers 

new to Galaxy who are not aware of all 

the tools in Galaxy. This system shows 

them only a handful of tools from a 

large collection (>3000) of tools which 

helps in exploratory data analysis.

Many tools come with annotations 

which can be used to improve the rec-

ommendations by adding more im-

portance to those which carry anno-

tations in comparison to those which 

do not in the list of recommendations. 

Tools containing similar annotations 

may have similar functionalities, and 

using these similarities, recommen-

dations can be further improved by 

showing similar tools for each rec-

ommended tool. On any Galaxy server, 

tools and workflows are created and 

updated regularly. Therefore, it be-

comes necessary to learn the latest 

tools and workflows using the GRU 

neural network. This task should be 

periodic to keep the tool recommen-

dation model updated with the latest 

tools and workflows. Galaxy adminis-

trators can overwrite the recommend-

ed tools predicted using the trained 

model by a different set of tools using 

the parameters specified in Galaxy 

configuration.
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FIGURE 3: Recommended tools, 

listed in the ’Tool recommendations‘ 

dropdown, in the workflow editor of 

the European Galaxy server for the 

Trimmomatic › BWA-MEM › Free-

Bayes tool sequence. The recom-

mended tools for the tool sequence 

can be seen in a dropdown while 

hovering on the right arrow button 

visible in the top right corner of the 

’FreeBayes‘ tool. Clicking on any rec-

ommended tool such as ’bcftools 

norm‘ in the dropdown opens a new 

block for the chosen tool that can be 

connected to the tool sequence.

FIGURE 4: The figure shows recom-

mended tools as leaves (on the right) of 

the tree after executing the RNA-STAR 

tool. Clicking on any recommended tool 

opens its definition in Galaxy and can 

be used for further analysis with the 

data files produced by the previous tool  

(RNA-STAR).
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ILLUSTRATIONS

Two examples are provided to show the 

real-time use of the recommender sys-

tem in the European Galaxy Server. The 

first shows recommended tools for a 

tool sequence with 3 tools, Trimmomat-

ic [3] › BWA-MEM [4] › FreeBayes [5], in 

the workflow editor (Figure 3). Another 

example of tool recommendations after 

using RNA-STAR is shown in Figure 4. It 

shows follow-up tools such as bamCov-

erage [6], MultiQC, and a few others.
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Anecdotically, most discussions about data 

center around ’big data‘, datasets that are huge 

in size and huge in the number of dimensions. 

The FAIR data movement stresses that data 

needs to fulfill certain requirements in order to 

be useful in the long run. Rendering data FAIR is a 

challenge that is beyond most experimentalists, 

creating the need for data stewards and curators. 

Also, condensed insight still is mainly to be found 

in scientific papers. For some domains, there 

are scientific databases that further condense 

insight from papers into standardized datasets, 

again using the services of data stewards and 

curators. In any case, there is a need for humans 

to look at data in order to provide quality con-

trol. And while in some domains, like e.g. object 

recognition in street photos nearly every human 

in the world can provide simple answers (we all 

know the ’Please mark all traffic lights in this 

image!‘ captchas), finding human ’ground truth‘ 

becomes much harder when looking at the re-

sults of biochemical, biological, and biomedical 

experimentation. The challenge of finding ground 

truth is not limited to builders of research data 

bases, but they are shared by anyone who wants 

to enhance the value of existing, specialized 

data. Within this article we describe two ways of 

making use of data in order to help data curation, 

ChemHITS, and the DeepCurate project.

TOWARDS SMART WAYS  TO HELP DATA CURATION Natural language  processing for the  life sciences
Sometimes it is said that ’data is the 

new gold‘ or the ’new oil‘ This under-

lines the value of data, especially in the 

context of training smart systems. As 

training data is so valuable, it must be 

put to use in a way that minimizes the 

need for human input and makes the 

maximum use of human input. In the 

following, we outline two methods that 

use human-curated public biological 

databases in order to either directly 

use them for a new purpose (ChemHITS)  

or in order to repurpose them as train-

ing data for deep learning in neural 

networks. In both cases it is our goal to 

bridge the gap between unstructured 

textual data and structured, ontolo-

gy-annotated graph and tabular data.

An ontology is a formal representation 

of knowledge. Ontologies are used to 

disambiguate concepts. An ontology 

identifier can resolve if ‘plasma’ per-

tains to ’blood plasma‘ or ’cytoplasma‘, 

for example.

ChemHITS (next section) is rule-based 

and uses a dictionary of compounds 

to map compound names to ontolgy 

terms. DeepCurate (following section) 

researches the use of database data 

as training data for deep learning net-

works.
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ChemHITS

Chemical compounds can be found 

having many different names – trivial, 

as well as systematic names. Hence, 

the unambiguous identification of a 

chemical compound solely based on its 

name requires comprehensive chem-

ical knowledge and often searches in 

chemical databases. As many publica-

tions exclusively describe a chemical 

compound by its name (as opposed to 

name and standardized identifier or 

name and structure formula) the match-

ing of these diverging notations can be 

tedious. However, this identification is 

crucial for the integration of biochemi-

cal data in databases or for the setup of 

biochemical models based on published 

data found in the literature.

We have developed ChemHits, an appli-

cation which detects and matches syn-

onymic names of chemical compounds 

and thereby facilitates merging of cor-

responding data referring to the same 

compound, but described with different 

names. It applies transformation rules to 

systematically process chemical com-

pound names to a unique generic normal-

ized name form. It is capable of normaliz-

ing a given name of a chemical compound 

and matching it against names in (bio-)

chemical databases, like KEGG COM-

POUND, SABIO-RK or ChEBI, even when 

there is no exact name-to-name match. 

The tool is also able to match a complete 

list of compound names against these 

databases which makes it useful for the 

automatic cross-annotation of chemical 

data in databases.

The key method driving ChemHITS is to 

become invariant to compound name 

modifications that do not change the 

meaning of the compound name. For ex-

ample, parts of the compound name can 

differ by replacing a systematic chem-

ical description by a trivial name. For 

example 2-propylpentanoic acid could 

become valproic acid. Similarly, there 

can be dissent about the lead structure: 

acetylphenol or phenzylacetate? These 

and similar modifications are covered 

by ChemHITS based on rules and dictio-

naries that are employed to map com-

pound names onto a normalized form. 

Two different compound names with the 

same normalized form are very likely to 

have the same chemical meaning.

DeepCurate

While the ChemHITS project takes a 

rule- and dictionary-based approach, 

the DeepCurate project seeks to merge 

different knowledge sources in order to 

produce deep-learning based improved 

Named Entity Recognition in texts with 

the ultimate goal of improving data ex-

traction and curation in full paper texts.

DeepCurate is a collaborative project 

between the NLP and SDBV groups at 

HITS and is funded by BMBF for three 

years that started in January 2020.

The motivating setting of DeepCurate is 

the SABIO-RK curation process. SABIO-

RK is our database currently offered in 

de.NBI. We use SABIO-RK both as target 

for improved curation support and as a 

tool to provide this. The key idea is here: 

Why not use the existing SABIO-RK data 

to learn more about its future data?

For SABIO-RK, human data extractors 

read papers, extract data, enter it into 

a data input interface. Here, human cu-

rators read the data entered, verify the 

data in the paper, assign entities (reac-

tants, enzymes, tissues) and reactions 

to ontologies, making the data ready for 

publication in the SABIO-RK database.

This two-step manual curation pipeline 

is the key to SABIO-RK's data quality. 

And, along with the SABIO-RK data it-

self, SABIO-RK curators meticulously 

gathered the paper trail leading up to 

the curation results.

To our knowledge, many curators still 

prefer using paper in the process. This is 

perferred, as it reduces screen time and 

gives more liberty in terms of posture.
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FIGURE 1: SABIO-RK provides structured 

data to its users. The data shown was 

assembled from a variety of locations in 

a scientific paper.
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    CONCLUSION & OUTLOOK

Within this article we have de-

scribed efforts to enrich con-

text-less database data to-

gether with curation traces to 

context-rich training data for the 

use in deep learning methods. The 

methods are generally applica-

ble, collaborations are welcome. 

Stay tuned for upcoming results.

Please briefly state the most im-

portant key data of your research 

project (name of the project, sup-

porting institution(s), partners in-

volved,etc.)

DATABASE-TO-DOCUMENT BACK-

PROJECTION: FROM DATABASE TO 

TRAINING DATA

One key challenge in performing cura-

tion is the recognition of named entities. 

Named entities are parts of speech that 

are not normal nouns (e.g. reactant) but 

rather names (e.g. oxygen). Obviously, 

for recognizing a reaction you first have 

to find which reactants are involved.

Named entity recognition becomes 

challenging because context matters. 

Wikipedia lists more than 20 meanings 

for the three letter acronym ATP which 

designates *adenosine triphosphate* in 

biological  context. While most of these 

meanings are non-biological, the word 

*plasma*, for example, can designate 

*blood plasma* or *cytoplasma*, the plas-

ma inside the cell. Context helps readers 

in making the difference between the two.

Database-to-document backprojection 

is about putting the database content 

back into its original context.

Databases extract data from its original 

context and then put it into a new, table 

based context. A typical database en-

try standardizes data, puts semantical-

ly same data in the same location in the 

same form (see Figure 1). The original 

context gets lost in the process, it is at 

least partly remaining in the paper trail, 

but not electronically readable.

However, deep learning training data 

is about *presenting the context* to 

deep neural networks with the goal of 

enabling them to learn this context and 

subsequently reduce the number of er-

rors when performing named entity rec-

ognition.

With backprojection, DeepCurate puts 

database content into its original con-

text, thus creating training data for 

deep learning. Within the project we 

have used this for SABIO-RK data, how-

ever the methods are largely database 

agnostic.

At the same time, the backprojection 

has another useful purpose, this is the 

purpose of quality control. It facilitates 

context checking by the curators. Exper-

iments that show the superiority of the 

derived training data are still ongoing.

MANUAL ANNOTATION EXTRACTION: 

SEEING WHAT MATTERS TO HUMAN 

CURATORS

When curating papers, SABIO-RK col-

laborators print the paper and then 

*mark* it using marker pens. They then 

archive the marked printout. As part of 

the DeepCurate project, we integrate 

this information into the training data. 

We scanned all printouts of papers 

contained in SABIO-RK including their 

markings and recognized the markings 

within the papers.

We will use these data as training data, 

and at the same time, these data shows 

the use of markings. The *content* 

ending up in the database often is not 

marked. However, the *context*, parts 

that are important for the understand-

ing of the paper is marked by the cura-

tors. We are looking forward to using 

this information for training, learning 

and named entity recognition.

TOWARDS SMART WAYS TO HELP DATA CUR ATION  –  NATUR AL LANGUAGE PROCESSING FOR THE LIFE SCIENCES 
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Many real world problems are a search for the needle in a haystack - we are trying to identify the 

rare, exceptional event, which may correspond to a disease in medicine or fraud in a business 

context. Learning from such data creates imbalanced data sets – some of the classes that we 

wish to identify have only a relatively small number of datapoints compared to the other classes. 

Imbalanced data are also common in numerous research domains including biomedicine and bio-

informatics. Using oversampling with classical machine learning algorithms is a popular approach 

to handle classification tasks for tabular imbalanced datasets. However, due to the existence of 
numerous oversampling algorithms and multiple classification models, towards only a given single 
dataset, it is difficult to properly decide on a classifier and oversampling algorithm. We developed a 
multi-schematic oversampling approach that produces high classification performance, irrespec-

tive of the classifier used, by utilizing rigorous modelling of the convex data space.  

IMBALANCED DATASETS AND  

OVERSAMPLING

Imbalanced classification problems aris-

ing in research domains including bio-

medicine and bioinformatics, are charac-

terized by an unequal distribution of data 

instances over different classes. Those 

with more instances are called majority 

classes, while classes with fewer instanc-

es are called minority classes. A common 

approach is to re-balance training data 

through oversampling, generating syn-

thetic examples for the minority class.

Along with several approaches, such as 

cost-sensitive learning, undersampling, 

generative networks etc., oversampling 

is a popular approach to improve imbal-

anced classification. Oversampling ap-

proaches generate synthetic minority 

class instances to balance the minority 

and majority class and facilitate  a bal-

anced learning experience for the subse-

quently applied classification algorithms. 

In particular, when tabular imbalanced 

datasets have fewer instances, predic-

tive models rely on classical machine 

learning algorithms.  In contrast, deep 

learning models rely on a higher volume 

of training data. 

Among numerous oversampling ap-

proaches, an observable trend is to gen-

erate synthetic samples from the convex 

space of the minority class. The SMOTE 

algorithm, developed in 2002, is the pio-

neer of such algorithms [1]. The algorithm 

creates a synthetic sample as a convex 

combination of two close-enough minori-

ty class data points. A major criticism of 

this approach is rooted on its tendency to 

over-generalize the minority class result-

ing in an improved classification of the 

minority class instances at the cost of a 

relatively high number of misclassifica-

tions of majority class instances. 

Over the past two decades more than 85 

extensions of the SMOTE algorithm have 

been developed to overcome this prob-

lem [2]. These extensions of SMOTE have 

implemented multiple strategies to solve 

the limitations of SMOTE. For example, 

the ADASYN algorithm uses a weighted 

distribution of minority class samples to 

decide upon minority class samples that 

are more important for synthetic sam-

ple generation [3]. Borderline-SMOTE 

detects borderline regions in the data 

and aims to generate synthetic samples 

from these borderline regions because 

such regions are important for classifiers 

to form a decision boundary [4]. Algo-

rithms like CURE-SMOTE, ProWSYN, and  

MOT2LD use several clustering and di-

mension reduction strategies to model 

the latent minority class manifold more 

precisely [5,6,7]. However, till now there 

is no conclusive evidence that a single 

algorithm can be considered significantly 

better than all others leading to the in-

troduction of more extensions of SMOTE 

with passing time [2]. With many avail-

able oversampling algorithms and classi-

fication models it is getting increasingly 

difficult for researchers to choose an ap-

propriate oversampling algorithm and a 

well-suited classification model, given a 

single imbalanced dataset.

RIGOROUS MODELLING OF THE  

CONVEX SPACE

The Localized Random Affine Shadowsam-

pling (LoRAS) is a recently proposed over-

sampling approach that relies on rigor-

ous modelling of the convex space [8].  

The rationale behind the approach rests 

on the assumption that considers the 

stochastically generated synthetic sam-

ples as random variables. This overcomes 

the problem of overgeneralization of the 

minority class by SMOTE, which is due to 

the inability to model the variance of the 

synthetic samples. Thus, the resulting 

synthetic samples interfere with the ma-

jority class samples and thereby, hamper 

classifiers to create an effective decision 

boundary during the training process. 

The LoRAS algorithm first creates shad-

owsamples in a minority class data neigh-

bourhood, which are Gaussian noise 

added to the minority class data points. 

Assuming that the synthetic samples 

are random variables following a t-dis-

tribution in a data neighbourhood, the 

variance of the synthetic samples is in-

versely proportional to the number of 

shadowsamples considered for a convex 

combination to generate the synthet-

ic sample. Thus, instead of generating 

synthetic data instances with convex 

combinations of only two minority sam-

ples as done by the SMOTE algorithm, 

the LORAS algorithm generates synthetic 

samples as random convex combinations 

of multiple shadowsamples. Moreover, 

the LoRAS algorithm also applies a man-

ifold-learning step prior to the synthetic 

sample generation. For this step state-

of-the-art manifold learning techniques, 

such as t-SNE and UMAP have been used. 

This enables the algorithm to detect data 

neighbourhoods that are consistent with 

the latent data manifold. 

IMPROVING THE 
SEARCH FOR NEEDLES 
IN A HAYSTACK  Classifier-independent oversampling for imbalanced data 
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The algorithm was tested on several 

publicly available imbalanced datasets 

arising from a variety of research do-

mains. The algorithm proved to be more 

effective as per popular performance 

measures, such as F1-Score and Bal-

anced accuracy, compared to some 

popular oversampling algorithms for 

some classifiers. It was also observed, 

that as opposed to many other oversam-

pling approaches, the LoRAS algorithm 

avoids the generation of synthetic sam-

ples near outliers and, thereby, has an 

inherent outlier detection mechanism. 

However, for some classifiers the im-

provement induced by LoRAS over other 

algorithms was not significant. Figure 1  

demonstrates the geometric idea of 

controlling the variance of the synthet-

ic samples of the minority class and 

provides a depiction of the LoRAS algo-

rithm in comparison to SMOTE.

CLASSIFIER INDEPENDENT  

OVERSAMPLING

A recent comparative study of 85 over-

sampling algorithms shows that the 

classifier-specific effectiveness of 

oversampling algorithms persists for all 

methods [2]. To develop a classifier  independent oversampling approach, integration of philosophies from multiple oversampling algorithms  is necessary. 
The idea of controlling the variance of 

the synthetic samples effectively for 

improved modelling of the convex space 

is thus extended to develop the Prox-

imity Weighted Random Affine Shad-

owsampling (ProWRAS) algorithm. 

The ProWRAS algorithm uses an elab-

orate protocol to generate synthetic 

samples. First, ProWRAS partitions the 

minority class data as per their prox-

imity to the majority class. This is per-

formed to detect regions in the minority 

class latent manifold that is relatively 

closer to the majority class. This kind of 

partitioning or clustering is used instead 

of a manifold learning step in LoRAS be-

cause it clusters the minority class data 

relative to the majority class. Once the 

clusters are decided ProWRAS decides 

upon the number of synthetic samples 

to be generated from each cluster such 

that more synthetic samples are gener-

ated from clusters closer to the majority 

class. Moreover, the algorithm ensures 

that the synthetic samples generat-

ed from the clusters near the majority 

class have relatively less variance. This 

prevents the synthetic samples from in-

terfering with the latent majority class 

data manifold. The algorithm has four 

different variance schemes for gener-

ation of synthetic samples: High Global 

Variance (HGV), Low Global Variance 

(LGV), High Local Variance (HLV), and 

Low Local Variance (LLV). The global 

variance schemes consider entire clus-

ters detected by the proximity based 

clustering as sampling neighbourhoods, 

while the local variance schemes draw 

synthetic samples from small neigh-

bourhoods within the clusters. The high 

variance schemes generate synthetic 

samples using convex combinations of 

only two shadowsamples, while the low 

variance schemes generate synthetic 

samples using convex combinations of 

more than two synthetic samples for 

clusters that are relatively near to the 

majority class.

The algorithm has been tested on mul-

tiple publicly available datasets against 

state-of-the-art oversampling algo-

rithms using four different classifiers. 

The results of the study show that giv-

en an imbalanced dataset and a corre-

sponding classifier, a proper choice of a 

specific oversampling scheme from the 

four proposed schemes can significantly 

improve the classification performance, 

irrespective of the classifier used. 

POTENTIAL APPLICATION IN  

BIOMEDICINE AND BIOINFORMATICS

Algorithms such as LoRAS and ProW-

RAS are applicable to imbalanced data-

sets independent of the research do-

main. However, in biomedical research 

and bioinformatics, imbalanced clas-

sification problems are common. The 

research direction of personalized med-

icine is based on customization of treat-

ment at a personal level. Imbalanced 

classification problems are significantly 

relevant in achieving this, since custom-

ization at a personal level can only be 

obtained by detecting patterns in small-

er populations in contrast to relatively 

larger, heterogeneous populations.  The 

benchmarking studies of the discussed 

algorithms also feature some datasets 

from biomedicine and bioinformatics, 

such as microcalcification, detection in 

mammograms, detection of thyroid pa-

tients, and protein localization predic-

tion in yeast.

Another instance of a real world appli-

cation of the LoRAS algorithm is au-

tomated  annotation of rare-cell types 

from single-cell expression data using 

the Single-Cell Synthetic Oversampling 

(sc-SynO) tool. This tool has been tested 

on single-cell expression data from car-

diac tissues for automated annotation 

of cardiac glial cells and proliferative 

cardiomyocytes [9]. 

In summary, oversampling techniques 

are still under frequent development 

and current ensemble approaches can 

significantly enhance ML-based classi-

fication results in almost all biomedical 

disciplines.
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FIGURE 1: (A) Figure show-

ing how controlling the vari-

ance of synthetic samples 

in the borderline regions 

can prevent them from in-

terfering with the majori-

ty class. (B) From SMOTE 

to LoRAS: controlling the 

variance of synthetic  sam-

ples by generating them 

from convex combination 

of multiple shadowsamples 

in a minority neighborhood

(A)

(B)
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