
Advanced analysis of
quantitative proteomics data

using R

Karin Schork and Michael Turewicz

Ruhr-University Bochum

Medizinisches Proteom-Center

Medical Bioinformatics

1 / 121

Organisation

All times are given in UTC+1!

10:00 - 10:20 Welcome and de.NBI overview
10:20 - 10:50 Advanced usage of R
10:50 - 11:30 Data preprocessing
11:30 - 12:45 Hands-on (and sample solution)
12:45 - 13:30 Clustering
13:30 - 14:15 Lunch break
14:15 - 15:00 Hands-on (and sample solution)
15:00 - 15:45 Principal component analysis (PCA) and ROC analysis
15:45 - 16:30 Hands-on (and sample solution)
16:30 - 17:00 Writing own R functions
17:10 - 17:45 Hands-on (and sample solution)
17:45 - 18:00 Discussion and questions

2 / 121

Advanced usage of R by using
additional R packages

What is ”basic usage” of R?
I Basic usage: Using basic R packages and their functions.

I Basic packages: Packages coming with the standard
installation of R that can be directly used after starting the R
console.

I This was the scope of our basic R course.

www.denbi.de

FKZ 031 A 534 A

Date
Monday, 18th Nov 2019, 10:00 a.m. – 6:00
p.m.

Venue Ruhr-University Bochum
Universitätsstr 150, 44801 Bochum

Further Details https://www.denbi.de/training

Registration http://goo.gl/forms/mpKHnbT1Um

Fee This course is for free!

Contact bioinfoservice@rub.de

You will learn…
• how to use the popular statistical
 programming language R for your daily analyses
• about the statistical methods applied in differential analyses
 (presented methods also apply to other omics data).

Topics
• Basic introduction to R usage
• t-test, ANOVA: Background on statistical inference
• Differential analysis of high-throughput data and
 candidate selection: multiple testing, volcano plot

Registration form

Differential analysis
of quantitative

proteomics data using R

de.NBI service center

4 / 121

Basic R packages

I Listing basic packages via "sessionInfo()"...

I ...or "sessionInfo()$basePkgs" in the console.

5 / 121

Basic R packages

I basic: The basic functions which let R function as a language
(e.g., arithmetic, input/output, basic programming support).
Its contents are available through inheritance from any
environment.

I datasets: Base R datasets (e.g., cars, iris).

I graphics: R functions for base graphics (e.g., plot).

I grDevices: Graphics devices and support for base and grid
graphics (e.g., pdf, png, colors).

I methods: Formally defined methods and classes for R objects,
plus other programming tools, as described in the references.

I stats: Functions for statistical calculations (e.g., statistical
tests) and random number generation.

I utils: Collection of utility functions (e.g., for package
installation and updates).

6 / 121

What is ”advanced usage” of R?

I Installing additional (= not basic) R packages from
repositories & using them for specific tasks.

I Writing one’s own functions (and packages)
→ at the end of today’s course.

7 / 121

R package repositories
I A software repository is a storage location from which

software packages can be downloaded and installed.

I Most of them are searchable online resources containing also
package metadata (e.g., download statistics).

I Quality control: Package tests and / or reviews & quality
measures.

I Some important software repositories:
I Comprehensive Perl Archive Network (Perl)
I Comprehensive-TeX-Archive-Network (TeX)
I Python Package Index (PyPI)
I GitHub

I An R package repository is an online software repository
containing R packages.

I Most important R package repositories:
I Comprehensive R Archive Network (CRAN)
I Bioconductor
I GitHub

8 / 121

Comprehensive R Archive Network (CRAN)

I https://cran.r-project.org/

9 / 121

Comprehensive R Archive Network (CRAN)

I The repository that provides the basic R packages.

I Contains currently 15, 247 packages from various disciplines
(no restriction).

I There are currently 101 mirrors (= servers containing copies
of repository) in 49 countries/regions around the world (4 in
Germany).

I Quality: Automatic tests (R CMD check) on different
platforms (Linux, Mac & Windows), review during submission
and compliance check with the ”CRAN Repository Policy”
guidelines.

10 / 121

Bioconductor

I https://www.bioconductor.org/

11 / 121

Bioconductor

I Provides R packages for bioinformatics.

I Contains currently 1, 823 software packages.

I There are currently 8 mirrors in 7 countries/regions around
the world (1 at TU Dortmund in Germany).

I Some relevant packages: limma, topGO, mzR, MSnbase,
xcms, MSstats, (...)

I Quality: Automatic tests (R CMD check) on different
platforms (Linux, Mac & Windows), expert review during
submission, compliance check with the Bioconductor package
guidelines and various quality measures (e.g., last update,
update frequency, number of downloads, coverage with unit
tests).

12 / 121

GitHub

I https://github.com/

13 / 121

GitHub

I General software package repository.

I Contains currently > 25, 000 R packages.

I All packages from CRAN & Bioconductor are automatically in
GitHub.

I Quality: No review, no R CMD check tests, no R-specific
guidelines. Only general code quality measures (e.g., unit test
coverage).

I Scope: Good for package development before CRAN or
Bioconductor submission.

14 / 121

Package installation: Set repositories

I setRepositories()

15 / 121

Package installation: Set repositories

I setRepositories(graphics = TRUE)

16 / 121

Package installation: Details about CRAN mirrors
I getCRANmirrors(all = TRUE)[35:50,1:3]

17 / 121

Package installation: Choose secure CRAN mirror

I chooseCRANmirror()

18 / 121

Package installation: Choose secure CRAN mirror

I chooseCRANmirror(graphics = TRUE)

19 / 121

Package installation: Choose secure Bioconductor mirror

I chooseBioCmirror()

20 / 121

Package installation: Choose secure Bioconductor mirror

I chooseBioCmirror(graphics = TRUE)

21 / 121

Package installation: Already installed?

I installed.packages() returns matrix of installed packages
(each row one package).

I Provides information on package name, version, license, etc.
installed.packages()[1:10, c("Package","LibPath","Version","License")]

nrow(installed.packages()) gives package number
rownames(installed.packages()) gives package names

22 / 121

Package installation: install.packages()

install.packages() downloads and installs packages from
currently chosen repositories (or local files).

Most important arguments:

pkgs Character vector of names of packages.

repos Character vector of repository URLs.

dependencies Install also dependencies of packages?
TRUE\FALSE or character vector, subset of
c("Depends", "Imports", "LinkingTo","Suggests",

"Enhances").

verbose TRUE\FALSE for giving progress report.

quiet TRUE\FALSE for reducing amount of output.

23 / 121

Package installation: available.packages()

I available.packages() returns matrix of all packages
available at currently selected repositories.

I Provides information on package name, version, license, etc.

I Package names can be searched using grep() even if exact
name is unknown.

I E.g., you can’t remember the name of a nice package you
want to test - jimma, rimma, yimma, ... ?!

24 / 121

Package installation: new.packages()

I new.packages() returns vector of not already installed
packages available at currently selected repositories.

I Alternative to available.packages().

I Advantage: Shorter list including only not installed packages.

I However, provides only package names.

I Can be also searched using grep().

25 / 121

Package installation: install.packages()

Example: installing limma.

(...)

26 / 121

Package installation: old.packages()

old.packages() indicates packages which have a later version at
currently selected repositories.

27 / 121

Package installation: update.packages()

update.packages() downloads & updates packages indicated by
old.packages(). Use argument ask=FALSE to be not asked for
every package separately whether to install it. Alternatively,
ask="graphics" allows package selection via a pop-up menu.

28 / 121

Package installation: remove.packages()

remove.packages() removes packages indicated by the argument
pkgs.

29 / 121

Loading packages: library()

library() loads and attach add-on packages.

Most important arguments:

package Name of a package.

logical.return TRUE\FALSE for indicating success
by TRUE\FALSE.

verbose TRUE\FALSE for printing additional
diagnostics.

search(), ls(), objects() give lists of attached packages
and/or R objects.

30 / 121

Loading packages: library() & search()

Examples:

31 / 121

Using packages: help() pages of packages

help("limma")

32 / 121

Using packages: help() pages of packages

help("normalizeBetweenArrays")

33 / 121

Using packages: help() pages of packages

browseVignettes(package="limma")

34 / 121

Using packages: Function name ambiguities

I Some functions from various packages have the same name.

I This may be very confusing!

I If you want to use explicitly a function from a specific package
use the :: operator.

I Usage: package::function

I Example: openxlsx::read.xlsx()

35 / 121

Data preprocessing

Data preprocessing

I now: preprocessing for quantitative proteomics datasets
I important preprocessing steps:

I handling of missing values
I normalization

I we will not cover preprocessing for raw files/spectra

37 / 121

Missing Values

I missing values occur when no data value is available for a
variable

I how missing values are handled can have a strong effect on
the analysis results

I different types of missingness of a variable X :
I missing completely at random (independent of X and other

variables)
I missing at random (probability of missingness depends on

other variables)
I missing not at random (value of X is related to the reason it is

missing)

38 / 121

Reasons for missing values in proteomics datasets

Biological reasons:

I protein is not present in the sample

I protein is present, but below detection limit

Experimental reasons:

I peptides derives from the protein are not selected for MS/MS

I MS/MS spectra produced for the corresponding peptides are
not identified with high enough confidence

Data preprocessing reasons:

I additional filter, e.g. at least 2 unique peptides

I values may be filtered out due to lack of confidence (e.g.
protein level FDR)

I e.g. MaxQuant: protein quantity set to 0, if there are not
enough peptide ratios for the LFQ-normalization step

39 / 121

Missing values - MaxQuant

40 / 121

Missing values - Spectronaut Pulsar

41 / 121

Missing values

I Different codings for missing values depending on software
and output settings (NA, NaN, 0, Filtered, ?, empty cell)

I Number of missing values often very high

I Proteins with missing values might be interesting
(on/off-proteins)

Handling of missing values

I remove proteins with missing values

I perform analysis only on valid values

I impute missing values

42 / 121

How does R represent missing values?

I Missing values are represented by NA (Not Available)

I NAs are present in data sets or returned by functions

I different versions of NA depending on vector type
(NA integer , NA real , NA complex , NA character)

I in character vectors, missing NA is shown without quotation
marks (to distinguish it from the character ”NA”):
c("x", "NA", NA) [1] "x" "NA" NA

I results of impossible calculations (e.g. 0/0, log(-1)) are
represented by NaN (Not a Number)

I NULL: is empty an object and is returned when an expression
or function results in an undefined value

43 / 121

How to read in datasets with missing values?

Most reading functions have an argument to control which entries
are recognized as missing values

read.table(file, na.strings = "NA")

Values that match to one of the values given in na.strings show
up as a missing value (NA) in R.

Warning! If na.strings is not set properly, numeric columns
containing missing values may be read in as characters or factors!
(see live presentation)

44 / 121

How do R functions handle missing values?

In general, NAs are treated as a unknown value, that could range
from −∞ to ∞ (in case of numeric values):

NA == 3 [1] NA

x <- c(1,2,3,NA); x + 1 [1] 2 3 4 NA

mean(x) [1] NA

mean(x, na.rm = TRUE) [1] 2

The argument na.rm is available in many R functions (e.g. mean,
median, min, max, sum). If set to TRUE, missing values in the
vector are deleted before calculation.

45 / 121

Missing values - correlation
Different options to handle missing values for calculation of
correlation matrices
cor(x, use = ...)

I "everything": returns NAs for all comparisons with a
variable containing NAs

I "complete.obs": deletes all rows with missing values before
calculation

I pairwise.complete.obs: use complete pairs of observations
for each combination of variables

”everything”

X1 X2 X3

9 8 7
3 9 1
8 3 NA
8 4 6

”complete.obs”

X1 X2 X3

9 8 7
3 9 1
8 3 NA
8 4 6

”pairwise.complete.obs”

X1 X2 X3

9 8 7
3 9 1
8 3 NA
8 4 6

46 / 121

Missing values for plotting
x <- 1:10

y <- c(1:3, NA, 5:7, NA, 9:10)

plot(x, y, pch = 16)

Missing values are often ignored without a warning!
47 / 121

Useful R functions to handle missing values

x <- c(1,2,3,NA)

na.omit(x)

[1] 1 2 3

attr(,"na.action")

[1] 4

attr(,"class")

[1] "omit"

Warning! For matrices and data.frames, na.omit will delete all
rows that contain at least one missing value.

is.na(x) [1] FALSE FALSE FALSE TRUE (why not x == NA?)
anyNA(x) [1] TRUE

complete.cases()

48 / 121

Handling of missing values

49 / 121

Data Imputation

Data Imputation = replace missing values with valid values
Imputation methods

I mean or median of the protein

I random value based on distribution of non-missing values

I small values (e.g. 0 or LOD/2, LOD = limit of detection)

I machine learning based

Disadvantages

I imputation can have a huge impact on result

I imputation of constant value can lead to underestimated
variance → risk of false positives

I biomarker candidates with too many imputed values may be
worthless

50 / 121

on/off proteins

I proteins that are present in one group and absent in the other
group

I ≈ proteins that have valid values in one group and missing
values in the other group

I higher confidence for found on/off proteins with high sample
size

I on/off proteins are often forgotten or filtered out by the
software

I t-test not possible → not p-value

I fold change =∞?

I cannot be displayed in volcano plot → separate list

51 / 121

Normalization - Motivation

Data contains technical and biological variation (but we are only
interested in biological differences)
Reasons for technical bias:

I small variations in experimental conditions and sample
handling (temperature, age of column, pipetting)

I often exact reasons for bias are unknown

Aims of normalization

I reduce/remove technical bias while keeping biological
differences

I make samples more comparable

I make following statistical analysis more reliable

52 / 121

Normalization

Assumptions:

I high-troughput data

I ”true” intensity distribution is similar over all samples

I most proteins are not differentially expressed between groups

I most normalization methods were developed for genomics and
later adapted to proteomics data

I often, data are log-transformed before normalization

53 / 121

Median normalization

shift or scale samples to have the same median

54 / 121

Quantile Normalization
Original dataset 1) Sort Values in each column

2) Replace values with row mean 3) Reconstruct original order

55 / 121

Quantile normalization

normalize all samples to the same distribution

56 / 121

Quantile normalization

normalize all samples to the same distribution

57 / 121

LOESS Normalization
I LOESS = LOcal regrESSion

I alternative name: LOWESS = LOcally WEighted Scatterplot
Smoothing

I based on MA-Plot (MA = Minus vs. Average)

I X-axis: average of log2-abundances (A)

I Y-axis: difference of log2-abundances (M)

A =
1

2
(log2(X1) + log2(X2))

=
1

2
log2(X1 · X2)

M = log2(X1)− log2(X2) = log2(X1/X2)

58 / 121

LOESS Normalization
I Aim: symmetry of the scatterplot around M = 0
I Estimation of local linear regression curve to remove bias
I Back-transformation of M and A values to intensities
I left: before normalization, right: after normalization

59 / 121

cyclic LOESS

I with LOESS, only two samples can be normalized at once

I cyclic LOESS: normalization is cycled through all possible
pairs of samples and repeated for several iterations

I number of pairs:
(n
2

)

60 / 121

fast cyclic LOESS

I compute average of all samples and normalize all samples
against this reference sample

I usually faster than cyclic loess, because less comparisons are
necessary

61 / 121

Normalization in R

R package limma (Linear Models for Microarray Data)
normalizeBetweenArrays(object, method, cyclic.method)

object: data matrix
method: "scale" (median), "quantile", "cyclicloess"
cyclic.method: "fast" or "pairs" (for LOESS)

62 / 121

MA Plots in R

package function comment

limma plotMA one sample vs. average of all other samples
affy MAPlot data needs to be ”AffyBatch” (read from

.CEL file)
affy ma.plot M and A need to be pre-calculated
affy mva.pairs matrix of MA-plots, not suitable for many

samples
for exercises: written function based on ma.plot

63 / 121

mva.pairs
X: data.frame containing samples in columns
library(affy)

affy::mva.pairs(X, log.it = TRUE)

64 / 121

Normalization - Evaluation with Boxplots

I boxplots of can give a hint if normalization is needed

I differences in box size

I looking at boxplots alone is not enough to compare
normalization methods!

65 / 121

Normalization - Evaluation with MA-Plots

I look at all combinations of sample pairs

I left: unnormalized data → bias

I middle: unsuitable median normalization, regression line falls

I right: suitable LOESS normalization

66 / 121

Normalization - group-wise normalization
I the assumption that most proteins do not change between

groups may not hold in some situations
I avoid group-wise normalization (this can lead to artifical

differences between groups)!
I use alternatives, e.g. LTS-normalization (least trimmed

squares)

67 / 121

EXERCISE

68 / 121

Clustering

What is Clustering?

I Clustering is the grouping of objects into groups (= clusters)...

I in a way that all objects inside a specific cluster are more
similar to each other than to objects in all other clusters.

70 / 121

Clustering algorithms

I There are many published clustering algorithms & algorithm
variants.

I They can be categorized into four major groups of algorithms:

I Hierarchical clustering (e.g., single linkage, complete linkage,
average linkage)

I Centroid-based clustering (e.g., k-means)
I Distribution-based clustering (e.g., EM clustering)
I Density-based clustering (e.g., DB SCAN)

I In this course only hierarchical clustering will be discussed.

71 / 121

Hierarchical clustering: Main idea

1. Each data point starts as its own cluster.

2. The distance between all pairs of clusters is computed.

3. Then the closest clusters are merged.

4. Steps 2. - 3. are repeated until all clusters are merged into a
single cluster.

72 / 121

Hierarchical clustering: Dendrograms

73 / 121

Hierarchical clustering: Agglomerative vs. divisive

Note: In this course only agglomerative methods are discussed.

74 / 121

Hierarchical clustering: Distance functions

I Distance functions compute distances between pairs of
vectors.

I Distances between pairs of vectors are necessary to obtain
distances between clusters.

I In this course, we discuss euclidean, manhattan &
correlation-based distances.

75 / 121

Hierarchical clustering: Euclidean distance

I The distance from classical geometry in school.

I d(p, q) :=

√
n∑

i=1
(qi − pi)2

76 / 121

Hierarchical clustering: Manhattan distance

I Also called taxicab distance or city block distance.

I d(a, b) :=
n∑

i=1
|ai − bi |

77 / 121

Hierarchical clustering: Manhattan vs. euclidean

78 / 121

Hierarchical clustering: Correlation-based distance

I Using correlation as distance measure.

I d(a, b) := (1− cor(a, b))/2, where cor(a, b) is Pearson’s
correlation coefficient between vectors a and b.

79 / 121

Hierarchical clustering: dist() & as.dist

dist() computes & returns the distance matrix of distances
between rows of a data matrix using the specified distance
measure.

Most important arguments:

x numeric matrix, data frame or "dist" object.

method the distance measure to be used, e.g.
"euclidean" or "manhattan".

as.dist() converts appropriate R objects to ”dist” objects. E.g.,
as.dist((1-cor(x))/2).

80 / 121

Hierarchical clustering: dist()

81 / 121

Hierarchical clustering: dist() & as.dist()

82 / 121

Hierarchical clustering: Linkage methods

I Linkage methods compute the distance between clusters.

I To this end, they use the distance methods between single
cluster elements (e.g., euclidean).

I They are crucial for the decision which clusters should be
merged.

I In this course we will discuss: Single, complete and average
linkage.

83 / 121

Hierarchical clustering: Single linkage

I Minimal distance between all mixed pairs from both clusters.

I Dsingle := mina∈A,b∈B {d(a, b)}.

84 / 121

Hierarchical clustering: Complete linkage

I Maximal distance between all mixed pairs from both clusters.

I Dcomplete := maxa∈A,b∈B {d(a, b)}.

85 / 121

Hierarchical clustering: Average linkage
I Unweighted pair group method with arithmetic mean

(UPGMA).
I Average distance between all mixed pairs from both clusters.
I Daverage := 1

|A|·|B|
∑
a∈A

∑
b∈B

d(a, b).

86 / 121

Hierarchical clustering: hclust()

hclust() performs hierarchical clustering in R and returns objects
describing a tree structure that can be used to plot dendrograms.

Most important arguments:

d a dissimilarity structure as produced by dist().

method the linkage method to be used, e.g.
"single", "complete" or "average".

87 / 121

Hierarchical clustering: hclust()

C
3

C
12

C
16 C
14 C
2

C
15 C
7

C
13

C
17

C
18 C
19

C
10

C
11

C
9

C
5

C
1

C
6

C
8

H
C

C
10

H
C

C
17

H
C

C
19

H
C

C
6

H
C

C
12

H
C

C
4

H
C

C
5

H
C

C
14

C
4

H
C

C
18

H
C

C
11

H
C

C
1

H
C

C
3

H
C

C
15

H
C

C
7

H
C

C
13

H
C

C
16

H
C

C
2

H
C

C
8

H
C

C
9

0.
0e

+
00

1.
0e

+
09

Cluster Dendrogram

hclust (*, "complete")
dist(x = t(dat), method = "manhattan")

H
ei

gh
t

88 / 121

Hierarchical clustering: heatmap()

heatmap() draws heat maps, i.e. false color images with a
dendrogram added to the left side and to the top. Rows and
columns are reordered with respect to these dendrograms.

Most important arguments:

x a numeric matrix containing values to be
plotted.

Rowv NULL/NA whether row-wise dendrogram
should be plotted.

Colv NULL/NA whether column-wise dendrogram
should be plotted.

scale "row", "column" or "none"

89 / 121

Hierarchical clustering: heatmap()

C
4

C
9

H
C

C
12

H
C

C
14

H
C

C
5

H
C

C
6

H
C

C
4

H
C

C
9

H
C

C
8

H
C

C
10

H
C

C
3

H
C

C
17

H
C

C
18

H
C

C
2

H
C

C
13

H
C

C
16

H
C

C
7

H
C

C
11

H
C

C
19

H
C

C
15

H
C

C
1

C
16

C
12 C

5
C

11
C

10
C

14
C

13
C

17
C

15 C
3

C
6

C
2

C
8

C
19 C

7
C

1
C

18

P98160

P13010

O00757

P07942

Q9UJ68

Q7Z6Z7

Q14657

Q9NX24

Q15020

Q15029

Q16543

P53396

O43776

P84103

Q07955

Q6IB77

P16219

P30039

O95954

P09467

90 / 121

Hierarchical clustering: heatmap()

C
4

C
9

H
C

C
12

H
C

C
14

H
C

C
5

H
C

C
6

H
C

C
4

H
C

C
9

H
C

C
8

H
C

C
10

H
C

C
3

H
C

C
17

H
C

C
18

H
C

C
2

H
C

C
13

H
C

C
16

H
C

C
7

H
C

C
11

H
C

C
19

H
C

C
15

H
C

C
1

C
16

C
12 C

5
C

11
C

10
C

14
C

13
C

17
C

15 C
3

C
6

C
2

C
8

C
19 C

7
C

1
C

18

Q9UJ68

Q07955

Q14657

P84103

P16219

P30039

P53396

Q15029

Q9NX24

O00757

Q15020

P13010

Q16543

P09467

O95954

O43776

Q6IB77

P07942

Q7Z6Z7

P98160

91 / 121

Hierarchical clustering: heatmap.2()

heatmap.2() from package gplots provides a number of
extensions to the standard R heatmap function.

Most important arguments:

x a numeric matrix containing values to be
plotted.

Rowv TRUE/FALSE whether row-wise dendrogram
should be plotted.

Colv TRUE/FALSE whether column-wise dendrogram
should be plotted.

distfun dist.

scale "row", "column" or "none"

trace level trace: "column","row","both" or "none"

92 / 121

Hierarchical clustering: heatmap.2()

H
C

C
12

H
C

C
14

H
C

C
5

H
C

C
9

H
C

C
8

H
C

C
4

H
C

C
6

H
C

C
18

H
C

C
10

H
C

C
17

H
C

C
3

H
C

C
2

H
C

C
13

H
C

C
16

H
C

C
7

H
C

C
11

H
C

C
19

H
C

C
15

H
C

C
1

C
4

C
9

C
11

C
10

C
14

C
19

C
13

C
17

C
16 C
5

C
12

C
15 C
3

C
1

C
18 C
7

C
2

C
6

C
8

P13010

P98160

O00757

Q9UJ68

P07942

Q7Z6Z7

Q14657

Q9NX24

Q15020

Q15029

Q16543

P84103

P53396

O43776

Q07955

Q6IB77

P16219

P30039

O95954

P09467

−4 −2 0 2 4

Row Z−Score

0
10

0
25

0

Color Key
and Histogram

C
ou

nt

93 / 121

LUNCH BREAK

94 / 121

EXERCISE

95 / 121

Principal component analysis
(PCA)

Principal Component Analysis

I transform n variables (X1, ...,Xn) into n Principal Components

I Principal Components (PCs) are linear combinations of the
original variables: PC = w1X1 + w2X2 + ... + wnXn

I PC1 has the largest
possible variance,
PC2 the largest
variance and of
vectors orthogonal to
PC1, ...

I 2-dimensional
PCA-Plots as an
overview over the
whole data set

97 / 121

different functions for PCA in R

I prcomp() and princomp() in base R

I use different numerical methods for calculation

I differences in naming of arguments and output

I important advantage of prcomp(): it can handle datasets
with more variables than observations (needed for omics
data!)

98 / 121

PCA Biplot

pca <- prcomp(iris[,1:4],

scale. = TRUE)

biplot(pca)

I shows first and
second PC of
observations as a
scatterplot

I direction of original
axes (variables)

I not suitable for
proteomics data (too
many variables)

99 / 121

PCA Plot
summ <- summary(pca)

plot(pca$x[,1], pca$x[,2], pch = 16,

col = rep(c("red", "blue", "green"), each = 50),

xlab = paste0("PC1 (", round(100*summ$importance[2,1], 1), "%)"),

ylab = paste0("PC2 (", round(100*summ$importance[2,2], 1), "%)"))

legend("topright", col = c("red", "blue", "green"), pch = 16,

legend = levels(iris$Species))

100 / 121

Explained variance

I each PC explains a portion of the
total variance in the dataset (PC1
the most, PC2 the 2nd most, ...)

I the higher the variance in PC1 and
PC2 combined, the more complete
is the overview over the dataset in
the 2D plot

101 / 121

Loadings

I Loadings are the weights used in
the linear combinations

I show how important a certain
variable is for a certain PC

I called rotation by prcomp

102 / 121

PCA Plots for Quality Control in Proteomics
I overview over whole data set
I detection of outlier points
I detection of batch effects

103 / 121

ROC Analysis

Diagnostic studies

I in diagnostic studies, biomarkers are searched that are able to
reliably separate samples with and without a specific disease

I single biomarkers or biomarker panels

I for a certain cutoff you get a contingency table showing
true/false positives and negatives

patient control sum

test + TP FP TP + FP
test - FN TN FN+ TN

sum TP + FN FP+TN n

105 / 121

Accuracy, Sensitivity and Specificity

patient control sum

test + TP FP TP + FP
test - FN TN FN + TN

sum TP + FN FP+TN n

I Accuracy = proportion of correctly classified persons TP+TN
n

I Sensitivity = proportion of patients that are correctly
classified as ill TP

TP+FN

I Specificity = proportion of controls that are correctly
classified as healthy TN

FP+TN

106 / 121

ROC curves

I ROC = Receiver operating characteristic

I shows the overall diagnostic ability of a biomarker or classifier

I plot sensitivity against specificity for all possible cutoffs

107 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0

1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1

2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2

.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.

8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.

8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.

8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.

8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.

8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7

9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8

.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.

12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.

12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0

13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0

.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.

19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.

19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.

19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.

19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.

19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0

20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves
step cutoff sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

108 / 121

Construction of ROC curves

step cut-off sens spec

0 −∞ 1.0 0.0
1 2.45 1.0 0.1
2 3.68 1.0 0.2
.
8 5.66 0.9 0.7
9 5.93 0.9 0.8
.
12 6.16 0.8 1.0
13 6.46 0.7 1.0
.
19 8.25 0.1 1.0
20 ∞ 0.0 1.0

109 / 121

Area under the curve (AUC)

I area under the ROC curve (∈ [0, 1])

I measure of the overall ability of the biomarker to predict the
class

I AUC = 1 → perfect separation of the two groups

I AUC = 0.5 → groups are not distinguishable

I AUC < 0.5 → direction was chosen wrong

110 / 121

Choice of best cut-off
I in a ROC curve, sensitivity and specificity of all possible

cut-offs are shown
I Youden criterion: choose threshold with highest sum of

sensitivity and specificity
I calculated best threshold has to be tested/validated on a

independent dataset

111 / 121

ROC curves with package pROC
x1: values of the control group
x2: values of the patient group
library(pROC)
ROC <- pROC::roc(controls = x1, cases = x2)

plot(ROC, print.thres = "best", print.auc = TRUE,

direction = "auto")

112 / 121

alternative R packages for ROC curves

I ROCR
I supports more different perfomance measures (not only sens

and spec)
I handling is more technical / machine learning oriented
I faster at calculating ROC curves and AUC for large data sets

I ROC (Bioconductor)

I plotROC

I ROCit

113 / 121

EXERCISE

114 / 121

Write own R functions

Why writing one‘s own functions

I A function is a designated section of code that performs
specific task.

I Function code is written once & reused unlimitedly by calling
its function name.

I Advantages: Code modularity, reusability, shorter code and
fewer errors (paradigm: procedural programming).

I When called, functions get needed data & settings via
arguments, i.e. variables for specific objects or values.

I Arguments are mandatory or optional i.e., with default value.

I Functions can return a result value or object.

116 / 121

Writing one‘s own functions: function()

117 / 121

Writing one‘s own functions: Hello world!
Template: name ← function (arg1 = x , arg2 = y , . . .) {. . . }

For single-line definitions curly brackets are optional:

For multiline definitions they are mandatory:

118 / 121

Writing one‘s own functions

I Yes, due to R’s ”x^y” this function is obsolete :-)...

I base is optional (default value 2) and power is mandatory.

I stop() stops the execution of my.exp.2() with an error.

I return() returns the value of variable result.

119 / 121

Writing one‘s own functions

120 / 121

EXERCISE

121 / 121

	Organisation
	Advanced Usage of R by using additional R packages
	Data Preprocessing and Quality Control
	Clustering
	Principal component analysis (PCA)
	ROC Analysis
	GO-Analysis
	Write own R functions

