Differential analysis of quantitative
proteomics data using R

Exercises
Michael Turewicz, Karin Schork

November 2, 2020

ded:NBI-u

GERMANY

~001010100011 GERMAN NETWORK FOR BIOINFORMATICS INFRASTRUCTURE

Contents

1 Hands-on session la 2
Exercise 1.1: Pocket calculator 2
Exercise 1.2: Variables 2
Exercise 1.3: Vectors e e 2
Exercise 1.4: Matrices e 2
Exercise 1.5: Data frames 3

2 Hands-on session Ib 4
Exercise 1.6: t-test 4
Exercise 1.7: ANOVA* e 4

3 Hands-on session Il 5
Exercise 2.1: Data import oo 5
Exercise 2.2: Descriptive statistics 5
Exercise 2.3: Create plots L 5
Exercise 2.4: Graphics parameters 6
Exercise 2.5: For-loop 6
Exercise 2.6: Calculation of p-values and fold changes 6
Exercise 2.7: Volcano plot 6
Exercise 2.8: Data export L 6
Exercise 2.9: Improved volcano plot™® 7
Exercise 2.10: Abundance plot™ L 7

*QOptional advanced exercise.

1 Hands-on session la

General hints:
e have a look at the slides to solve the exercises

e write down your code in an editor (e.g. the upper left window of RStudio, see slide
23)

e also look at the help pages of the mentioned R functions

Exercise 1.1: Pocket calculator

Open R and use it as “pocket calculator” for the following computational tasks:
10 + 5,

1/2,

(34 5) =2,

3+95%2,

3+5%

and 100/0.

Exercise 1.2: Variables

Generate a variable x with value 2 and one variable y with value 5. Then compute the
following expressions: x + y, logio(z - y) and y*.

Choose some of the functions mentioned in the script and use ? or 7?7 to learn more
about them. Terminate the R session correctly via q() without saving the workspace.

Exercise 1.3: Vectors

Create a vector x containing the numbers 5, 2, 4, 6 and 43.

Set the third element of = to 10.

Replace the last element of the vector by its negative value and print the modified
vector « into the console using the function print ().

Create the vector y = (4,4,4,4,4,4,4,5,5,5,5,5,5,5) in a “clever” way and print the
vector y into the console.

Exercise 1.4: Matrices

Create the following matrices:

6
x=[oy] r=o

3
2
6 2 3 7

Index the matrices to the following elements, rows and columns of X and Y:

e the upper right element of X

e the lower left element of Y
e the first row of X

e the second column of Y

Exercise 1.5: Data frames

Use the function data.frame() to create a table with the following content:

Type Diameter | Height | Age
Oak 57 15.7 29
Beech 38 12.1 18
Birch 23 8.5 10
Chestnut 63 17.3 27
Beech 41 15.1 21

First, index the data in order to obtain the diameters of the trees. Then, index the
data in order to obtain the information on beeches. Finally, index the data in order to
find trees that are 20 years or older.

2 Hands-on session |b

Exercise 1.6: t-test

The following table lists the body height of six men and six women in cm. Create two
vectors named men and women with the respective values. Then conduct a t-test (function
t.test()) on the data to investigate the difference between men and women. Finally
plot a box plot using the command

boxplot(men, women, names = c("men", "women"))

to visualize this difference.

men 186 | 176 | 182 | 173 | 190 | 181
women | 172 | 168 | 178 | 166 | 175 | 170

Exercise 1.7: ANQVA*

The following table gives body weight in kg of different dogs. Investigate the difference
between breeds (T terrier, S sausage dog, P pekinese) by means of ANOVA. Pass the
data as a data.frame() to the function aov(). In case of rejection conduct the post-hoc
test “Tukey’s honest significant difference” using the function TukeyHSD().

breed T T T S S S P P P
weight | 7.6 | 8.1 | 8.7 | 5.7 5.6 |48 | 6.2 |59 6.5

3 Hands-on session 1l

After considering the basics of R, the following exercises will be directly related to the
differential analysis of your quantitative proteomics data. Thus, in the following you may
also imagine a scenario where hundreds or thousands of proteins have been quantified
(e.g., with label-free or targeted MS-based proteomics) in a set of samples from two or
more groups of interest. E.g., in a preclinical study aiming at the detection of biomarker
candidates these groups may be "diseased” and "healthy controls”. Now, we will train the
skills to detect the best biomarker candidates by computing p-values and fold changes
(i.e., the ratios of means of the considered groups) using R.

Exercise 2.1: Data import

The folder “data” on the USB drive contains several files that are part of exercise 2.1.
Import the files example_import.txt, r_workshop_final_datal.txt,
r_workshop_final_datal.csv, r_workshop_final_data2.txt and
r_workshop_final_data2.csv.

(hint: inspect the help pages of the R functions read.table () and read.csv(), see also
slides 42-44).

It is always a good idea to have a short look into the data first (e.g., in order to see
whether there is a header and which column separator is used).

After assigning it to the variable dat1 inspect the imported file
r_workshop_final_datal.txt using the functions print (), dim(), head () and tail().
In order to use datl for the following exercises transform it into a matrix using the
command datl <- as.matrix(datl).

Exercise 2.2: Descriptive statistics

Please use row 581 from dat1 (from exercise 2.1) and compute characteristics like mean,
variance, and extrema for group “D” and group “C”. To this end, create a vector of
group membership using the command groups <- substr(colnames(datl), 1, 1).
Then save the values of group “D” (i.e., dat1[581, groups == "D"]) in a vector d and
the last five values (i.e., dat1[681, groups == "C"]) in a vector c.

Additionally, check the output of the function summary(). Finally draw a boxplot of
the log2-transformed values using boxplot (log2(d), log2(c)).

Exercise 2.3: Create plots

By using the function rnorm(n, mean, sd) one can draw n random numbers from a
normal distribution with mean mean and standard deviation sd. Create a vector x
containing 50 random numbers from a normal distribution with mean 10 and standard
deviation 1. Then create a vector y containing 50 random numbers from a normal
distribution with mean 0 and standard deviation 0.5. Sum the vectors and store them in
a vector z. Create a histogram as well as a boxplot of the vector x. Create a scatterplot

of vector z versus vector z. Create a barplot of the first 10 entries of y. (Hint: For the
basic plot functions take a look at slides 54 and 57.)

Exercise 2.4: Graphics parameters

Recreate the scatter plot of exercise 2.3. Add an appropriate title and label the axes
with "Variable x” and "Variable z”. Instead of the default black circles use red triangles.
Finally, save the graphic as png file into the results file of your USB drive or on the
computer.

Hints: Take a look at slide 55 and the example on slide 58. You can get a list of
predefined colours using the command colors(). Possible plot symbols are shown on
the help page of the function argument pch. How to save a graphic is explained on slide
59.

Exercise 2.5: For-loop

Use a for-loop to calculate and print the first ten square numbers (12,22, ...,10%). Save
the calculated numbers in a vector called square.

Exercise 2.6: Calculation of p-values and fold changes

In this exercise we will use the dataset datl that you read into R in exercise 2.1. Make
sure that you have transformed datl into a matrix (is.matrix(dat1) should give the
result TRUE).

Construct a for-loop which iterates over all 1000 rows of dat1 and computes row-wise
p-values (t-test) and mean ratios (fold changes) between the two groups. The t-test
should be performed on the log2-transformed values (function log2()), while the mean
ratios should be calculated on the untransformed data. Create a vector of p-values (p)
and a vector of mean ratios (fc) that contain the p-values resp. mean ratios for all rows.
Finally, to manage the multiple testing problem adjust the p-values using the function
p-adjust () with the method fdr.

Hints: Take a look at slides 46-47. Construct the for-loop in a text editor (e.g. the
upper left window of RStudio) before you test it in the R console.

Exercise 2.7: Simple volcano plot

Draw a simple volcano plot using the results from exercise 2.6. To this end, compute
the -1og10 of the (not adjusted) p-values and the log2 of the mean ratios. Then plot
the resulting log-mean-ratios vs the resulting log-p-values. Also add a plot title and axis
labels.

Exercise 2.8: Data export

Combine the results of exercise 2.6 with the original data datl in order to obtain the
summary of a simple differential analysis. To this end, use the function cbind() to

combine datl with the vectors containing the p-values, adjusted p-values and mean
ratios. Inspect the resulting table via head (). Then export the resulting table using the
function write.table() as txt file into the results folder of your USB drive or on the
computer. Finally, open the resulting file in excel.

Exercise 2.9: Improved volcano plot*

Draw an improved volcano plot (like on slide 51) with the following features:

e A horizontal dashed line indicates the p-value threshold of 0.05.

e Two vertical dashed lines indicate the respective mean ratio threshold on each side
of the volcano plot.

e All differentially expressed proteins (e.g., p-value < 0.05 and mean ratio > 2 or
< %) are highlighted in a specific color.

e The proteins that are significant after the multiple testing correction are high-
lighted in another color.

Hints: For drawing the lines the function abline () is useful. You can use the function
which() (see slide 19) to select the differential and very best features.

Exercise 2.10: Abundance plot*

Plot the abundance profiles of a few (e.g., 2 or 4) interesting differentially expressed
proteins (like on slide 52). Try to include some numeric information of the differential
analysis in the plots (e.g., the adjusted p-values).

Hint: You can use the function paste0() to print the value of an object to use it for
example in the plot title or within the function text ().

